目标检测系列文章之R-CNN【2014】


英文原文链接: link.
前言:2014年CVPR上的经典paper《Rich feature hierarchies for Accurate Object Detection and Segmentation》

基本思想

R-CNN摒弃了传统的滑动窗口和人工选取特征的方法,将候选区域算法Selective Search和卷积神经网络相结合。
在这里插入图片描述
R-CNN+SVM分类:CNN解决高维问题时容易陷入局部最优,而支持向量机通过使分类间隔最大化来得到最优的分类面,其算法会转化成一个凸二次规划的问题,故其能得到全局最优解,卷积神经网络和支持向量机进行互补,为最终算法的效果提升提供了保证。
池化层虽然减少计算量和增加平移不变性,但导致图像特征的损失,卷积核的数量在逐层增加,其目的是为了消减池化层对特性信息的丢失。

数据集和训练

数据集:
ImageNet ILSVRC 2012:千万张图像,分为1000类,分类识别;
PASCAL VOC 2007:一万张图像,分为20类,目标检测。
训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值