英文原文链接: link.
前言:2014年CVPR上的经典paper《Rich feature hierarchies for Accurate Object Detection and Segmentation》
基本思想
R-CNN摒弃了传统的滑动窗口和人工选取特征的方法,将候选区域算法Selective Search和卷积神经网络相结合。
R-CNN+SVM分类:CNN解决高维问题时容易陷入局部最优,而支持向量机通过使分类间隔最大化来得到最优的分类面,其算法会转化成一个凸二次规划的问题,故其能得到全局最优解,卷积神经网络和支持向量机进行互补,为最终算法的效果提升提供了保证。
池化层虽然减少计算量和增加平移不变性,但导致图像特征的损失,卷积核的数量在逐层增加,其目的是为了消减池化层对特性信息的丢失。
数据集和训练
数据集:
ImageNet ILSVRC 2012:千万张图像,分为1000类,分类识别;
PASCAL VOC 2007:一万张图像,分为20类,目标检测。
训练: