树的定义
树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。
此外,树的定义还需要强调以下两点:
1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
2)m>0时,子树的个数没有限制,但它们一定是互不相交的。
树的代码实现
```java
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
先序遍历(头左右)
先序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。
递归实现:
public static void preorder(TreeNode root, List res){
if (root == null){
return ;
}
res.add(root.val);
preorder(root.left, res);
preorder(root.right, res);
}
}
非递归实现:
借助栈来实现
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<Integer>();
Stack<TreeNode> preorder = new Stack<TreeNode>();
// 先放入头结点并出栈后,按照先右再左的顺序入栈,则出栈顺序为头左右
if (root != null){
preorder.push(root);
while (!preorder.isEmpty()){
TreeNode cur = preorder.pop();
res.add(cur.val);
if (cur.right != null){
preorder.push(cur.right);
}
if (cur.left != null){
preorder.push(cur.left);
}
}
}
return res;
}
中序遍历(左头右)
中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。
递归实现:
public static void inOrderTree(TreeNode root, List list){
if (root == null){
return ;
}
inOrderTree(root.left, list);
list.add(root.val);
inOrderTree(root.right, list);
}
非递归实现:
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<Integer>();
Stack<TreeNode> inorder = new Stack<TreeNode>();
if (root != null){
while (!inorder.isEmpty() || root != null){
// 先将整棵树的左边界全部入栈
if (root != null){
inorder.push(root);
root = root.left;
}else{
// 弹出一个节点,将弹出节点的右孩子入栈
root = inorder.pop();
res.add(root.val);
root = root.right;
}
}
return res;
}else{
return res;
}
}
后序遍历(左右头)
后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。
递归实现:
public static void postorder(TreeNode root, List res){
if (root == null){
return ;
}
postorder(root.left, res);
postorder(root.right, res);
res.add(root.val);
}
}
非递归实现:
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<Integer>();
Stack<TreeNode> postorder = new Stack<TreeNode>();
Stack<TreeNode> collect = new Stack<TreeNode>();
if (root != null){
postorder.push(root);
}
while (!postorder.isEmpty()){
TreeNode cur = postorder.pop();
collect.push(cur);
if (cur.left != null){
postorder.push(cur.left);
}
if (cur.right != null){
postorder.push(cur.right);
}
}
while (!collect.isEmpty()){
res.add(collect.pop().val);
}
return res;
}
}