L1-048 矩阵A乘以B(15 分)
给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出“Error: Ca != Rb”,其中Ca是A的列数,Rb是B的行数。
输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
用Java写(有一个超时了)
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n1=sc.nextInt();
int n2=sc.nextInt();
int[][] a = new int[100][100];
int[][] b = new int[100][100];
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
a[i][j]=sc.nextInt();
}
}
int n3=sc.nextInt();
int n4=sc.nextInt();
for (int i = 0; i < n3; i++) {
for (int j = 0; j < n4; j++) {
b[i][j]=sc.nextInt();
}
}
if(n2!=n3)
System.out.println("Error: "+n2+" != "+n3);
else {
System.out.println(n1+" "+n4);
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n4; j++) {
int count =0;
for (int k = 0; k < n2; k++) {
count+=a[i][k]*b[k][j];
}
System.out.print(count);
if(j<n4-1)
System.out.print(" ");
}
System.out.print("\n");
}
}
}
}
用C写,一样的方法,完美通过
#include<stdio.h>
int main() {
int n1,n2,n3,n4;
int a[100][100]= {0},b[100][100]= {0};
scanf("%d %d", &n1, &n2);
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n2; j++) {
scanf("%d",&a[i][j]);
}
}
scanf("%d %d",&n3,&n4);
for (int i = 0; i < n3; i++) {
for (int j = 0; j < n4; j++) {
scanf("%d",&b[i][j]);
}
}
if(n2!=n3)
printf("Error: %d != %d",n2,n3);
else {
printf("%d %d\n",n1,n4);
for (int i = 0; i < n1; i++) {
for (int j = 0; j < n4; j++) {
int count =0;
for (int k = 0; k < n2; k++) {
count+=a[i][k]*b[k][j];
}
printf("%d",count);
if(j<n4-1)
printf(" ");
}
printf("\n");
}
}
}
综上所述:C语言还是很强大的