平衡二叉树节点跟高度的关系

设f(n)为高度为n的平衡二叉树最少含有的节点数,则:f(1) = 1;f(2) = 2; f(3) = 4;f(4) = 7;……

这些可以通过画图就能得到,但是当n很大时呢?其实有如下结论:f(n) = f(n-1) + f(n-2) +1,(n>=3)。这个递推结论如何得到的呢?

引导问题:求一棵二叉树的节点数目:

假设一颗二叉树T,其左右子树分别为TL,TR。又假设T的节点数目为F(T),TL,TR的节点数目分别为F(TL),F(TR)。则显然:

F(T) = F(TL) + F(TR) + 1。

本文的问题:求高度为n的平衡二叉树最小需要多少节点:

同样假设T为高度为n的平衡二叉树,其需要最少的节点数目为F(n)。又假设TL,TR为T的左右子树,因此TL,TR也为平衡二叉树。假设F1,F2为TL,TR的最少节点数,则,F(n) = F1+F2 +1。那么F1,F2 到底等于多少呢?由于TL,TR与T一样是平衡二叉树,又由于我们知道T的最少节点数是F(n),其中n为T的高度,因此如果我们知道TL,TR的高度就可以知道F1,F2的值了。由平衡二叉树的定义可以知道,TL和TR的高度要么相同,要么相差1,而当TL与TR高度相同(即:都等于n-1)时,我们算出来的F(n)并不能保证最小,因此只有当TL与TR高度相差一(即:一个高度为n-1,一个高度为n-2)时,计算出来的F(n)才能最小。此时我们假设TL比TR高度要高1(即:TL高度为n-1,TR高度为n-2),则有:F1 = F(n-1),F2 = F(n-2)。因此得到结论:F(n) = F(n-1) + F(n -2 ) + 1!
又有结论:深度为h的平衡二叉树的最少节点数N=F(h+2)-1;
F(n)为斐波那契数列,
高度范围:F(h+2)-1<=n

### 平衡二叉树中删除节点的时间复杂 对于平衡二叉树中的删除操作,最坏情况下的时间复杂取决于树的高度 \(h\)。在最坏情况下,可能需要从根节点遍历到最深的叶节点[^1]。 #### 删除操作的具体过程 当执行删除操作时,通常会遇到三种情形: - 被删节点无子节点:直接移除该节点。 - 被删节点有一个子节点:用其唯一的子节点替代它。 - 被删节点有两个子节点:找到右子树中最左端的节点(即最小值),替换被删节点的位置并继续处理新位置上的删除问题。 每种情形下都需要更新路径上各节点的信息来保持树结构的自平衡特性,这增加了额外的操作开销但不会显著影响整体渐近时间复杂。 #### 特殊类型的平衡二叉树 不同种类的自平衡二叉查找树有不同的机制维持自身的高度接近于 \(\log_2{n}\),从而保证了高效的查询性能以及相对稳定的插入删除效率。例如AVL树严格控制左右两侧高度差不超过1;红黑树则通过染色规则间接实现相似效果[^2]。 因此,在理想状态下,这些经过优化设计的数据结构能够确保删除操作平均与最好情况均达到对数级别的时间消耗\(O(\log n)\)而非线性的\(O(n)\)。 ```python def delete_node(root, key): if not root: return root # 标准BST删除逻辑... # 更新当前节点高度 root.height = 1 + max(get_height(root.left), get_height(root.right)) balance_factor = get_balance_factor(root) # 执行旋转以恢复平衡... return root ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值