HDU 6198 Number Number Number

打表代码:

#include<bits/stdc++.h>

int dp[200][2000];
int fib[1100];

int main(){
    fib[0]=0;
    fib[1]=1;
    for(int i=2;i<=40;i++){
        fib[i]=fib[i-1]+fib[i-2];
    }
    dp[0][0]=1;
    //num是组成该数的个数
    //如果j可以有num个fib数组成,那么肯定能由num-1个j-fib[i]组成
    for(int num=1;num<=40;num++){
        for(int i=0;i<=40;i++){
            for(int j=fib[i];j<=1000;j++){
                dp[num][j]+=dp[num-1][j-fib[i]];
            }
        }
    }
    for(int i=1;i<=40;i++){
        for(int j=1;j<=1000;j++){
            if(!dp[i][j]){
                printf("%d\n",j);
                break;
            }
        }
    }
}

套用高斯消元即可得出前三项的关系。

f(n)=4*f(n-1)-4*f(n-2)+f(n-3)

矩阵快速幂即可得到最终答案:

#include<bits/stdc++.h>

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
#define MAXN 0x3f3f3f3f3f3f3f3f

using namespace std;

const ll MOD=998244353;
const int N=3;

struct node{
    ll a[10][10];
}tmp,ans,t;

//#define debug

node matrix(node x,node y ){
    node q;
    for(int i=1;i<=N;i++){
        for(int j=1;j<=N;j++){
            q.a[i][j]=0;
            for(int k=1;k<=N;k++){
                q.a[i][j]=(q.a[i][j]+x.a[i][k]*y.a[k][j]+MOD)%MOD;
            }
        }
    }
    return q;
}

void quick_ma(ll n){
    for(int i=1;i<=N;i++){
        for(int j=1;j<=N;j++){
            ans.a[i][j]=0;
        }
    }
    for(int i=1;i<=N;i++) ans.a[i][i]=1;
    t=tmp;
    while(n){
        if(n&1) ans=matrix(ans,t);
        n>>=1;
        t=matrix(t,t);
    }
}

int main()
{
    ll n;
    for(int i=1;i<=N;i++){
        for(int j=1;j<=N;j++){
            tmp.a[i][j]=0;
        }
    }
    tmp.a[1][1]=4;
    tmp.a[1][2]=-4;
    tmp.a[1][3]=1;
    tmp.a[2][1]=1;
    tmp.a[3][2]=1;
    while(scanf("%lld",&n)!=EOF){
        if(n==1) printf("4\n");
        else if(n==2) printf("12\n");
        else if(n==3) printf("33\n");
        else{
            quick_ma(n-3);
            printf("%lld\n",(ans.a[1][1]*33l%MOD+ans.a[1][2]*12l%MOD+ans.a[1][3]*4l%MOD)%MOD);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值