链接
题目
如果整数 x 满足:对于每个数位 d ,这个数位 恰好 在 x 中出现 d 次。那么整数 x 就是一个 数值平衡数 。
给你一个整数 n ,请你返回 严格大于 n 的 最小数值平衡数 。
示例
示例 1:
输入:n = 1
输出:22
解释:
22 是一个数值平衡数,因为:
- 数字 2 出现 2 次
这也是严格大于 1 的最小数值平衡数。示例 2:
输入:n = 1000
输出:1333
解释:
1333 是一个数值平衡数,因为:
- 数字 1 出现 1 次。
- 数字 3 出现 3 次。
这也是严格大于 1000 的最小数值平衡数。
注意,1022 不能作为本输入的答案,因为数字 0 的出现次数超过了 0 。示例 3:
输入:n = 3000
输出:3133
解释:
3133 是一个数值平衡数,因为:
- 数字 1 出现 1 次。
- 数字 3 出现 3 次。
这也是严格大于 3000 的最小数值平衡数
说明
0 <= n <= 10e6
思路一(暴力)
我们首先理解题目意思,就是说数字n只能出现n次,1只能出现1次,2只能出现2次,然后可以对这些数字排列组合,比如1,22,212,221,3331,122333等等,题目说了n最大为10e6,因此我们可以列出所有最小均衡数,然后直接判断
C++ Code
class Solution {
public:
int nextBeautifulNumber(int n) {
vector<int> num{1,22,122,212,221,333,1333,3133,3313,3331,4444,14444,22333,23233,23323,23332,32233,32323,32332,33223,33232,33322,41444,44144,44414,44441,
55555,122333,123233,123323,123332,132233,132323,132332,133223,133232,133322,155555,212333,213233,213323,213332,221333,223133,223313,223331,224444,231233,231323,231332,
232133,232313,232331,233123,233132,233213,233231,233312,233321,242444,244244,244424,244442,312233,312323,312332,313223,313232,313322,321233,321323,
321332,322133,322313,322331,323123,323132,323213,323231,323312,323321,331223,331232,331322,332123,332132,332213,332231,332312,332321,333122,333212,333221,422444,
424244,424424,424442,442244,442424,442442,444224,444242,444422,515555,551555,555155,555515,555551,666666,1224444};
int p = num.size();
for (int i = 0; i < p; i++) {
if (n < num[i]) {
return num[i];
}
}
return 0;
}
};
思路二 (暴力)
同样的暴力,只不过我们不列举出所有最小均衡数,而是从n+1的数开始逐一判断,直到找到符合的最小均衡数。
C++ Code
class Solution {
public:
bool check(int num){
int cnt[10] = {0};
while (num > 0)
{
int temp = num % 10;
cnt[temp]++;
num = num / 10;
}
for (int i = 0; i < 10; i++)
{
if (cnt[i] && cnt[i] != i)
return false;
}
return true;
}
int nextBeautifulNumber(int n) {
int num=n+1;
while(check(num) == false) num++;
return num;
}
};