假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
斐波那契数解法
public int climbStairs(int n) {
if(n == 1){
return 1;
}
int a = 1;
int b = 1;
int result = 0 ;
for (int i = 2; i <= n; i++) {
result = a +b;
a = b;
b =result;
}
return result;
}
动态规划
不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。
第 i 阶可以由以下两种方法得到:
1. 在第 (i-1)阶后向上爬一阶。
2. 在第 (i-2)阶后向上爬 2 阶。
所以到达第i 阶的方法总数就是到第 (i-1)阶和第 (i-2) 阶的方法数之和。
令 dp[i]表示能到达第 i 阶的方法总数:
dp[i]=dp[i-1]+dp[i-2]
public int climbStairs(int n) {
if (n == 1) {
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}