1.归并排序
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
具体过程可参照下图:
代码如下:
/**
* @param arr 待排序数组
* @param n 数组长度
*/
public static void mergeSort(int[] arr, int n) {
mergeSort(arr, 0, n - 1);
}
/**
* 递归使用归并排序,对arr[l.....r]的范围进行排序
*
* @param arr
* @param l
* @param r
*/
private static void mergeSort(int[] arr, int l, int r) {
if (l >= r) {//终止条件
return;
}
int mid = l + (r - l) / 2;
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
merge(arr, l, mid, r);
}
/**
* 归并操作,对arr[l...mid]和arr[mid+1...r]两部分进行归并
*
* @param arr
* @param l
* @param mid
* @param r
*/
private static void merge(int[] arr, int l, int mid, int r) {
int[] temps = new int[r - l + 1];
for (int i = l; i <= r; i++) {
temps[i - l] = arr[i];
}
int i = l, j = mid + 1;
for (int k = l; k <= r; k++) {
if (i > mid) {
arr[k] = temps[j - l];
j++;
} else if (j > r) {
arr[k] = temps[i - l];
i++;
}
if (temps[i - l] < temps[j - l]) {
arr[k] = temps[i - l];
i++;
} else {
arr[k] = temps[j - l];
j++;
}
}
}
仔细观察整个归并排序过程,在进行merge操作前,如果是已经有序的话,可以取消这一次merge操作,提升性能。代码如下
/**
* 递归使用归并排序,对arr[l.....r]的范围进行排序
*
* @param arr
* @param l
* @param r
*/
private static void mergeSort(int[] arr, int l, int r) {
if (l >= r) {//终止条件
return;
}
int mid = l + (r - l) / 2;
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
if (arr[mid] > arr[mid + 1]){
merge(arr, l, mid, r);
}
}
这里还有一个优化思路,在归并排序过程中,要进行排序的长度很短时,可以用插入排序代替,优化性能,在数组长度很短的时候,归并排序的递归操作就会比插入排序更消耗性能。改进代码如下:
/**
* 递归使用归并排序,对arr[l.....r]的范围进行排序
*
* @param arr
* @param l
* @param r
*/
private static void mergeSort(int[] arr, int l, int r) {
/*if (l >= r) {//终止条件
return;
}*/
if (r - l <= 5){//这里的优化是在有序数组数组长度很短时,插入排序比归并排序性能更好
insertionSort(arr,l,r);
}
int mid = l + (r - l) / 2;
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
if (arr[mid] > arr[mid + 1]){
merge(arr, l, mid, r);
}
}
/**
* 在arr[l...r]范围内做插入排序
* @param arr
* @param l
* @param r
*/
private static void insertionSort(int[] arr,int l,int r){
for (int i = l + 1;i <= r ; i ++){
//寻找元素arr[i]合适的插入位置
int e = arr[i];
int j;
for (j = i; j > l ; j --){
if (arr[j - 1] > e){
arr[j] = arr[j - 1];
}else {
break;
}
}
arr[j] = e;
}
return;
}