今天是快乐的Day1,我们怀着必死的信念来到了这里,开始了我们的随团旅游,准备在这里开展17天大型旅游活动。
我们进入正题,开始讲讲第一天所见的名胜。
概率与期望
1.概念(返璞归真)
随机变量
对于一个变量,其值随机但是有一定范围(即在一个集合内随机等概率取出一个数)。(注:本blog中讨论的随机变量指离散型随机变量,连续性随机变量请自行进行学习。)
独立事件
若两个随机事件相互不干涉,即其中一个的随机取值不影响另一个,这称这两个事件为独立事件。
概率
一个随机事件的发生可能性,及目的状态在所有状态中的出现频率。一般简写为P(x),其中x为随机变量。
期望
离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E。
2.基本性质
等比数列求和公式
∑
i
=
0
n
x
i
=
1
−
(
x
n
+
1
)
/
(
1
−
x
)
\sum_{i=0}^nx^i=1-(x^{n+1})/(1-x)
i=0∑nxi=1−(xn+1)/(1−x)
在概率中常常会令x<1,在x<1时有一下的拓展:
∑
i
=
0
∞
x
i
=
1
/
(
1
−
x
)
\sum_{i=0}^\infty x^i=1/(1-x)
i=0∑∞xi=1/(1−x)
关于证明,显然读者你可以通过计算发现第一个成立,而对于第二个可以利用极限法进行思考不难理解。
期望线性性
E
(
X
+
Y
)
=
E
(
X
)
+
E
(
Y
)
E(X+Y)=E(X)+E(Y)
E(X+Y)=E(X)+E(Y)
注意,这里的随机变量没有任何限制,这也是关于期望的一个非常关键的公式,它通用并且可以对计算期望做出重大的改变。
概率算期望
这个名字可能有点草率。
这里是指对于一个概率为P的事件,它的期望是1/P。
独立事件的特殊公式
对于两个相互独立满足:
P(XY)=P(X)*P(Y)与E(XY)=E(X)*E(Y)。
这里不给出证明(因为比较显然)。
我也不知道名字的性质
对于任何一个随机变量X,满足该结论:
E
(
X
)
=
∑
i
=
1
∞
P
(
X
>
=
i
)
E(X)=\sum_{i=1}^\infty P(X>=i)
E(X)=i=1∑∞P(X>=i)
3.解题策略
这是今天的核心内容,几乎也是这篇博客唯一的干货。
运用期望线性性
这是一个最为典型和重要的部分,大部分的期望题都可以通过这样的方式转化为前缀和的形式,使其可以单点O(1)整体O(n)的时间复杂度求解。流程如下:
1.设答案为S,设定n个随机变量为
X
1
X_1
X1到
X
n
X_n
Xn。
2.对于E(S)存在E(S)= ∑ i = 1 n E ( X i ) \sum_{i=1}^nE(X_i) ∑i=1nE(Xi)
3.推导 E ( X i ) E(X_i) E(Xi)的计算方式,一般而言可以像动态规划那样进行不同情况的讨论,使其可以由其他可计算得到的值推出。
4.最后求出答案E(S)。
对于游走类的问题
对于从一个点到另一个点的做随机游走的期望步数,通常可以运用一下方式:
1.设定若干个问题。
2.对于每个问题进行讨论其到达的方式,即可以有哪些方式计算得到这个点的期望步数。
3.通常会在第2步中出现调用自己的状况,这时候,请不要慌张,我们不虚,可以和它正面对刚。一般可以通过解线性方程或是高斯消元的方式解决。
关于单次变化的转化技巧
很多时候单次的改变会有十分重要的作用,这直接关系到对于期望线性性的推导,但有时这样的改变会令人烦恼,我们希望它每次只改变一个量,以方便我们做出推导,但如果它改变了多个量,则有可能使式子无法推导或者难以计算。
因此,我们可以通过这个策略来解决这个问题。
1.我们对题目中改变多个数的要求进行修改,使其只改变一个数。
2.在原来需要改变的数字上做上标记。
3.对于已标记的点以被修改的方式操作,而其他点则以正常方式操作。这样可以保证对于一个没被标记的点,它在没被标记的点中被选中的几率原题中一致。
4.由此我们对题做了改造,使其与原题答案和一致,而且我们也能获得一种快乐的方式对答案进行计算。每个点最多被选中修改一次,也必然会有一次,由此可以计算它是否已被标记的贡献和以计算答案。
数学的快乐
很多时候,数学知识是对期望计算的极大助力,通过一系列的计算,可以为你的方法省下时间或是开阔视野。
下面推送一下小技巧:
1.关于 ∑ \sum ∑,很多时候可以对其进行转化或是化简,如,当求的是等差数列的和时,就可以默默地把 ∑ \sum ∑丢掉换用求和公式。再如,交换 ∑ \sum ∑的位置,可能会发现一些东西与 ∑ \sum ∑无瓜,然后就可以提取或是丢掉。
2.关于*i这样的操作,可以看成是 ∗ ∑ i = 1 i 1 *\sum_{i=1}^i1 ∗∑i=1i1,这样就使得其可能可以做上边介绍的优化了。
3.强行暴力可能会带来奇迹,有时拆开一些东西并进行合并同类项可能会得到一些奇妙的结果。
4.组合数学的力量也是不容小觑的,很多的东西可以跳过思考直接瞎搞,组合数学可能会为你带来不一样的明天。
5.神仙操作的优化也是无法想象的,虽然我学不来,但是如果谁会FFT,矩阵乘法等都有可能对式子的推导与计算产生帮助甚至卡过。
换个视角看世界
1.有时在期望线性化的过程中选定的 X i X_i Xi并不容易计算,这时候就需要将视角做一下转换。这样不是很好懂,举个例子,在求关于凸包的问题时,若将点作为 X i X_i Xi显然不是很有利,因为凸包对点没有十分确切的定义,但其对边做出了要求,所以可以将 X i X_i Xi设定与边有关,会对求结果有较大的帮助。
2.在顺向操作不行是,可以尝试反向操作,毕竟反向操作是神仙,有时反向可能会时情况很少,目的更明确。
其他的基操
1.不要害怕设的数字太多,只要不导致答案错误和爆炸,随机变量的多并无什么坏处,当然也没好处。
2.在你所求的 E ( X i ) E(X_i) E(Xi)取值只有0或1时, E ( X i ) = P ( X i = i E(X_i)=P(X_i=i E(Xi)=P(Xi=i(依情况而定 ) ) )) ))。这是显然的,但同时这也可以令你使用一些关于概率的计算方式,方便求解。
2+.从2.延伸一下,我们可以考虑等价的况并进行转化或是和并,很多时候对于每个点、数、序列、球之类的生来就是平等的,其某些值也是相同的,可以对其化简,甚至带来大幅度优化。
理论上应该提出例题与其题解,但是因为题量与个人能力的问题,不敢瞎写,所以附上同行的好同学的blog与其笔记,作为参考与拓展。
blog
笔记
END.