2019金华随团旅游Day1

本文深入探讨了概率论中的核心概念——概率与期望,详细解释了独立事件、概率计算及期望的基本性质。并通过实例讲解了如何运用期望线性性解决实际问题,包括游走类问题的解答策略和转化技巧,提供了数学计算的优化方法。
摘要由CSDN通过智能技术生成

今天是快乐的Day1,我们怀着必死的信念来到了这里,开始了我们的随团旅游,准备在这里开展17天大型旅游活动。

我们进入正题,开始讲讲第一天所见的名胜。

概率与期望

1.概念(返璞归真)

随机变量

对于一个变量,其值随机但是有一定范围(即在一个集合内随机等概率取出一个数)。(注:本blog中讨论的随机变量指离散型随机变量,连续性随机变量请自行进行学习。)

独立事件

若两个随机事件相互不干涉,即其中一个的随机取值不影响另一个,这称这两个事件为独立事件。

概率

一个随机事件的发生可能性,及目的状态在所有状态中的出现频率。一般简写为P(x),其中x为随机变量。

期望

离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E。

2.基本性质

等比数列求和公式

∑ i = 0 n x i = 1 − ( x n + 1 ) / ( 1 − x ) \sum_{i=0}^nx^i=1-(x^{n+1})/(1-x) i=0nxi=1(xn+1)/(1x)
在概率中常常会令x<1,在x<1时有一下的拓展:
∑ i = 0 ∞ x i = 1 / ( 1 − x ) \sum_{i=0}^\infty x^i=1/(1-x) i=0xi=1/(1x)
关于证明,显然读者你可以通过计算发现第一个成立,而对于第二个可以利用极限法进行思考不难理解。

期望线性性

E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
注意,这里的随机变量没有任何限制,这也是关于期望的一个非常关键的公式,它通用并且可以对计算期望做出重大的改变。

概率算期望

这个名字可能有点草率。
这里是指对于一个概率为P的事件,它的期望是1/P。

独立事件的特殊公式

对于两个相互独立满足:
P(XY)=P(X)*P(Y)与E(XY)=E(X)*E(Y)。
这里不给出证明(因为比较显然)。

我也不知道名字的性质

对于任何一个随机变量X,满足该结论:
E ( X ) = ∑ i = 1 ∞ P ( X &gt; = i ) E(X)=\sum_{i=1}^\infty P(X&gt;=i) E(X)=i=1P(X>=i)

3.解题策略

这是今天的核心内容,几乎也是这篇博客唯一的干货。

运用期望线性性

这是一个最为典型和重要的部分,大部分的期望题都可以通过这样的方式转化为前缀和的形式,使其可以单点O(1)整体O(n)的时间复杂度求解。流程如下:
1.设答案为S,设定n个随机变量为 X 1 X_1 X1 X n X_n Xn

2.对于E(S)存在E(S)= ∑ i = 1 n E ( X i ) \sum_{i=1}^nE(X_i) i=1nE(Xi)

3.推导 E ( X i ) E(X_i) E(Xi)的计算方式,一般而言可以像动态规划那样进行不同情况的讨论,使其可以由其他可计算得到的值推出。

4.最后求出答案E(S)。

对于游走类的问题

对于从一个点到另一个点的做随机游走的期望步数,通常可以运用一下方式:
1.设定若干个问题。

2.对于每个问题进行讨论其到达的方式,即可以有哪些方式计算得到这个点的期望步数。

3.通常会在第2步中出现调用自己的状况,这时候,请不要慌张,我们不虚,可以和它正面对刚。一般可以通过解线性方程或是高斯消元的方式解决。

关于单次变化的转化技巧

很多时候单次的改变会有十分重要的作用,这直接关系到对于期望线性性的推导,但有时这样的改变会令人烦恼,我们希望它每次只改变一个量,以方便我们做出推导,但如果它改变了多个量,则有可能使式子无法推导或者难以计算。
因此,我们可以通过这个策略来解决这个问题。

1.我们对题目中改变多个数的要求进行修改,使其只改变一个数。

2.在原来需要改变的数字上做上标记。

3.对于已标记的点以被修改的方式操作,而其他点则以正常方式操作。这样可以保证对于一个没被标记的点,它在没被标记的点中被选中的几率原题中一致。

4.由此我们对题做了改造,使其与原题答案和一致,而且我们也能获得一种快乐的方式对答案进行计算。每个点最多被选中修改一次,也必然会有一次,由此可以计算它是否已被标记的贡献和以计算答案。

数学的快乐

很多时候,数学知识是对期望计算的极大助力,通过一系列的计算,可以为你的方法省下时间或是开阔视野。
下面推送一下小技巧:

1.关于 ∑ \sum ,很多时候可以对其进行转化或是化简,如,当求的是等差数列的和时,就可以默默地把 ∑ \sum 丢掉换用求和公式。再如,交换 ∑ \sum 的位置,可能会发现一些东西与 ∑ \sum 无瓜,然后就可以提取或是丢掉。

2.关于*i这样的操作,可以看成是 ∗ ∑ i = 1 i 1 *\sum_{i=1}^i1 i=1i1,这样就使得其可能可以做上边介绍的优化了。

3.强行暴力可能会带来奇迹,有时拆开一些东西并进行合并同类项可能会得到一些奇妙的结果。

4.组合数学的力量也是不容小觑的,很多的东西可以跳过思考直接瞎搞,组合数学可能会为你带来不一样的明天。

5.神仙操作的优化也是无法想象的,虽然我学不来,但是如果谁会FFT,矩阵乘法等都有可能对式子的推导与计算产生帮助甚至卡过。

换个视角看世界

1.有时在期望线性化的过程中选定的 X i X_i Xi并不容易计算,这时候就需要将视角做一下转换。这样不是很好懂,举个例子,在求关于凸包的问题时,若将点作为 X i X_i Xi显然不是很有利,因为凸包对点没有十分确切的定义,但其对边做出了要求,所以可以将 X i X_i Xi设定与边有关,会对求结果有较大的帮助。

2.在顺向操作不行是,可以尝试反向操作,毕竟反向操作是神仙,有时反向可能会时情况很少,目的更明确。

其他的基操

1.不要害怕设的数字太多,只要不导致答案错误和爆炸,随机变量的多并无什么坏处,当然也没好处。

2.在你所求的 E ( X i ) E(X_i) E(Xi)取值只有0或1时, E ( X i ) = P ( X i = i E(X_i)=P(X_i=i E(Xi)=P(Xi=i(依情况而定 ) ) )) ))。这是显然的,但同时这也可以令你使用一些关于概率的计算方式,方便求解。

2+.从2.延伸一下,我们可以考虑等价的况并进行转化或是和并,很多时候对于每个点、数、序列、球之类的生来就是平等的,其某些值也是相同的,可以对其化简,甚至带来大幅度优化。

理论上应该提出例题与其题解,但是因为题量与个人能力的问题,不敢瞎写,所以附上同行的好同学的blog与其笔记,作为参考与拓展。
blog
笔记
END.

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
weixin102旅游社交微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值