64. 最小路径和

题目链接:力扣

 解题思路:动态规划

  1. 定义状态:dp[i][j],表示从 (i,j) 到右下角的最小路径和
  2. 初始状态和边界情况:
    1. 根据状态的定义,最后一行以及最后一列达到右下角的路径都只有一种,向右或者向左,所以,初始状态为:
      1. dp[m-1][n-1]=grid[m-1][n-1],右下加的最短路径和。
      2. dp[m-1][i] = grid[m-1][i]+dp[m-1][i+1],最后一行每个列的最短路径和
      3. dp[i][n-1] = grid[i][n-1] + dp[i+1][n-1]
  3. 确定状态转移:现在最后一行和最后一列的状态已经确定,其他的状态转移如下:
    1. 根据状态的定义,从 (i,j) 到达右下角,有两种方案:
      1. 往下走,到达(i+1,j),这时dp[i][j] = grid[i][j]+dp[i+1][j]
      2. 往右走,到达(i,j+1),这时 dp[i][j] = grid[i][j]+dp[i][j+1]
      3. 取两者的较小值
    2. 所以除以最下面一行,以及最右边一列的其他状态转移方程为:dp[i][j] = grid[i][j]+Math.min(dp[i+1][j],dp[i][j+1])

AC代码:

class Solution {
    public static int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n];
        dp[m-1][n-1]=grid[m-1][n-1];

        for (int i = n-2;i>=0;i--){
            dp[m-1][i]=grid[m-1][i]+dp[m-1][i+1];
        }

        for (int i = m-2;i>=0;i--){
            dp[i][n-1] = grid[i][n-1]+dp[i+1][n-1];
        }

        for (int i = m-2;i>=0;i--){
            for (int j = n-2;j>=0;j--){
                dp[i][j] = grid[i][j]+Math.min(dp[i+1][j],dp[i][j+1]);
            }
        }
        return dp[0][0];
    }
}

 滚动数组空间优化,使用一维数据滚动更新dp,空间复杂度为O(n)

AC代码:

class Solution {
    public static int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[] dp = new int[n];
        dp[n - 1] = grid[m - 1][n - 1];
        for (int i = n - 2; i >= 0; i--) {
            dp[i] = grid[m - 1][i] + dp[i + 1];
        }
        for (int i = m - 2; i >= 0; i--) {
            for (int j = n - 1; j >= 0; j--) {
                if (j < n - 1) {
                    dp[j] = grid[i][j] + Math.min(dp[j], dp[j + 1]);
                }else {
                    dp[j]=grid[i][j]+dp[j];
                }
            }
        }
        return dp[0];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值