题目链接:力扣
解题思路:动态规划
- 定义状态:dp[i][j],表示从 (i,j) 到右下角的最小路径和
- 初始状态和边界情况:
- 根据状态的定义,最后一行以及最后一列达到右下角的路径都只有一种,向右或者向左,所以,初始状态为:
- dp[m-1][n-1]=grid[m-1][n-1],右下加的最短路径和。
- dp[m-1][i] = grid[m-1][i]+dp[m-1][i+1],最后一行每个列的最短路径和
- dp[i][n-1] = grid[i][n-1] + dp[i+1][n-1]
- 根据状态的定义,最后一行以及最后一列达到右下角的路径都只有一种,向右或者向左,所以,初始状态为:
- 确定状态转移:现在最后一行和最后一列的状态已经确定,其他的状态转移如下:
- 根据状态的定义,从 (i,j) 到达右下角,有两种方案:
- 往下走,到达(i+1,j),这时dp[i][j] = grid[i][j]+dp[i+1][j]
- 往右走,到达(i,j+1),这时 dp[i][j] = grid[i][j]+dp[i][j+1]
- 取两者的较小值
- 所以除以最下面一行,以及最右边一列的其他状态转移方程为:dp[i][j] = grid[i][j]+Math.min(dp[i+1][j],dp[i][j+1])
- 根据状态的定义,从 (i,j) 到达右下角,有两种方案:
AC代码:
class Solution {
public static int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
dp[m-1][n-1]=grid[m-1][n-1];
for (int i = n-2;i>=0;i--){
dp[m-1][i]=grid[m-1][i]+dp[m-1][i+1];
}
for (int i = m-2;i>=0;i--){
dp[i][n-1] = grid[i][n-1]+dp[i+1][n-1];
}
for (int i = m-2;i>=0;i--){
for (int j = n-2;j>=0;j--){
dp[i][j] = grid[i][j]+Math.min(dp[i+1][j],dp[i][j+1]);
}
}
return dp[0][0];
}
}
滚动数组空间优化,使用一维数据滚动更新dp,空间复杂度为O(n)
AC代码:
class Solution {
public static int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[] dp = new int[n];
dp[n - 1] = grid[m - 1][n - 1];
for (int i = n - 2; i >= 0; i--) {
dp[i] = grid[m - 1][i] + dp[i + 1];
}
for (int i = m - 2; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
if (j < n - 1) {
dp[j] = grid[i][j] + Math.min(dp[j], dp[j + 1]);
}else {
dp[j]=grid[i][j]+dp[j];
}
}
}
return dp[0];
}
}