67. 二进制求和

该文介绍了一种用Java模拟十进制列竖式计算的方法来解决二进制加法问题,通过遍历字符串从后向前,处理不同长度的二进制数相加,以及进位逻辑,最终得到结果。
摘要由CSDN通过智能技术生成

题目链接:力扣

解题思路:模拟十进制中的列竖式方法进行计算,逢二进一,因为高位在前,低位在后,两个二进制长度不一定相等,可以取两者长度的较大值,从后面开始遍历两个字符串,当较短的字符串遍历完后,剩下的相加过程中,较短的字符串在加法运算中贡献为0,具体算法如下:

  1. 初始值:
    1. aLen = a.length()-1
    2. bLen = b.length()-1
    3. n = Math.max(aLen, bLen)
    4. result = new StringBuilder():保存结果
    5. sum=0:保存每次相加的结果或者上次相加产生的进位
  2. 一共循环n次,i 从0到n:
    1. n是从0增加到n,相加过程中需要从最后一位开始相加,所以可以通过aLen-i或者bLen-i 从后往前获取每一位的字符,当较短的字符遍历完后,之后的循环中共享为0
    2. sum += i<=aLen?(a.charAt(aLen - i) - '0' ) : 0;
    3. sum += i<=bLen?(b.charAt(bLen - i) - '0' ) : 0:现在sum保存的是相加的结果
    4. result.append(sum%2)
    5. sum /= 2:现在,sum中保存的是进位

AC代码:

class Solution {
    public static String addBinary(String a, String b) {
        int aLen = a.length() - 1;
        int bLen = b.length() - 1;
        int n = Math.max(aLen, bLen);
        StringBuilder result = new StringBuilder();
        int sum = 0;
        for (int i = 0; i <= n; i++) {
            sum += i <= aLen ? (a.charAt(aLen - i) - '0') : 0;
            sum += i <= bLen ? (b.charAt(bLen - i) - '0') : 0;
            //当前的二进制相加和
            result.append(sum % 2);
            //产生的进位
            sum /= 2;
        }
        if (sum!=0){
            result.append(sum);
        }
        return result.reverse().toString();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值