厨房里总共有 n 个橘子,你决定每一天选择如下方式之一吃这些橘子:
- 吃掉一个橘子。
- 如果剩余橘子数 n 能被 2 整除,那么你可以吃掉 n/2 个橘子。
- 如果剩余橘子数 n 能被 3 整除,那么你可以吃掉 2*(n/3) 个橘子。
每天你只能从以上 3 种方案中选择一种方案。
请你返回吃掉所有 n 个橘子的最少天数。
示例 1:
输入:n = 10
输出:4
解释:你总共有 10 个橘子。
第 1 天:吃 1 个橘子,剩余橘子数 10 - 1 = 9。
第 2 天:吃 6 个橘子,剩余橘子数 9 - 2*(9/3) = 9 - 6 = 3。(9 可以被 3 整除)
第 3 天:吃 2 个橘子,剩余橘子数 3 - 2*(3/3) = 3 - 2 = 1。
第 4 天:吃掉最后 1 个橘子,剩余橘子数 1 - 1 = 0。
你需要至少 4 天吃掉 10 个橘子。
思路:递归 / 记忆化搜索 / 动态规划
使只吃掉一个橘子的操作尽可能少,另外两种操作尽可能多
递归:
class Solution {
public int minDays(int n) {
if(n<3) return n;
if(n==3) return 2;
return Math.min((n%3)+minDays(n/3), (n%2)+minDays(n/2))+1;
}
}
动态规划:
class Solution {
Map<Integer, Integer> memo = new HashMap<Integer, Integer>();
public int minDays(int n) {
if (n <= 1) return n;
if (memo.containsKey(n)) return memo.get(n);
memo.put(n, Math.min(n%2+1+minDays(n/2), n%3+1+minDays(n/3)));
return memo.get(n);
}
}