Problem Description
请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。‘
Input
输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示DFS的遍历结果。
Example Input
1
4 4
0 1
0 2
0 3
2 3
Example Output
0 1 2 3
分析:图的深度遍历顾名思义即优先遍历儿子后遍历兄弟,即先深度再宽度。
可使用递归的思想
代码参考:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
int map[101][101], v[101];
void dfs(int u, int k)
{
for(int i=0; i<k; i++)
{
if(v[i]!=1&&map[u][i]==1) //for循环依次把所有顶点全部走一遍,如果走到的顶点没有遍历过而且该顶点与v[u]有弧连接,遍历该顶点,再以该顶点为基准,执行函数。
{
v[i]=1;
printf(" %d", i);
dfs(i, k);
}
}
} //核心部分 该部分利用递归的思想实现了深度遍历
int main()
{
int n, m, k, i, a, b;
scanf("%d", &n);
while(n--)
{
scanf("%d %d", &k, &m);
memset(map, 0, sizeof(map));
memset(v, 0, sizeof(v));
for(i=0; i<m; i++)
{
scanf("%d %d", &a, &b);
map[a][b]=map[b][a]=1;
}
printf("0");
v[0]=1;
dfs(0, k);
printf("\n");
}
return 0;
}