优化改进YOLOv5算法之Deformable Attention,有效提升检测效果,秒杀SE、CBAM和CA等注意力机制

本文介绍了如何在YOLOv5中集成Deformable Attention模块,通过修改common.py和yolo.py文件,创建yolov5x-C3-DAttention.yaml配置,并进行训练,以增强模型的检测性能。Deformable Attention结合了ViT和DCN的优点,通过学习位置偏差来优化特征采样,降低了计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 Deformable Attention模块原理

2 YOLOv5中加入Deformable Attention模块

2.1 common.py文件配置

2.2 yolo.py配置

2.3 创建添加优化点模块的yolov5x-C3-DAttention.yaml

2.4 训练 

参考文献



1 Deformable Attention模块原理

思路主要来源于可变形卷积DCN,理解起来很容易,就是保持Q不变,针对每个K/V学习一个位置偏差,取该处的特征值即可。

上面一张图展现了四种网络的特点:

  • ViT中所有Q的感受野是一样的,都针对全局所有位置特征;
  • Swin中则是局部Attention,因此处于不同窗口的两个Q针对的感受野区域是不一样的;
  • DCN则是针对周围九个位置学习偏差,之后采样矫正过的特征位置,可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI追随者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值