YOLOv12 正式发布 | 检测效果超越YOLO11!!

 论文地址:YOLOv12: Attention-Centric Real-Time Object Detectors

代码地址:https://github.com/sunsmarterjie/yolov12

提升YOLO框架的网络架构一直至关重要,尽管注意力机制在建模能力方面已被证明具有优越性,但长期以来一直专注于基于CNN的改进。这是因为基于注意力的模型无法与基于CNN的模型的速度相匹配。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,该框架在匹配先前基于CNN的模型速度的同时,利用了注意力机制的性能优势。

YOLOv12在准确率上超越了所有流行的实时目标检测器,同时保持了有竞争力的速度。例如,YOLOv12-N在T4 GPU上实现了1.64ms的推理延迟,达到40.6%的mAP,比先进的YOLOv10-N/YOLOv11-N分别高出2.1%/1.2%的mAP,且速度相当。这一优势也扩展到其他模型规模。YOLOv12还超越了改进DETR的端到端实时检测器,如RT-DETR/RTDETRv2:YOLOv12-S在运行速度上快42%,仅使用36%的计算资源和45%的参数,就击败了RT-DETR-R18/RT-DETRv2-R18。

1 引言

实时目标检测因其低延迟特性一直受到广泛关注,这些特性提供了巨大的实用性。其中,YOLO系列在延迟和准确率之间取得了有效的平衡,从而主导了该领域。尽管YOLO的改进主要集中在损失函数、标签分配和网络架构设计等方面,但网络架构设计仍然是关键的研究优先事项。尽管以注意力为中心的视觉Transformer(ViT)架构已被证明即使在小型模型中也具有更强的建模能力,但大多数架构设计仍然主要关注CNN。

这种情况的主要原因在于注意力机制的效率低下,这主要源于两个因素:注意力机制的二次计算复杂性不高效的内存访问操作(后者是FlashAttention解决的主要问题)。因此,在类似的计算预算下,基于CNN的架构比基于注意力的架构性能高出约,这显著限制了注意力机制在YOLO系统中(在高推理速度至关重要的系统中)的应用。

本文旨在解决这些挑战,并进一步构建一个以注意力为中心的YOLO框架,即YOLOv12。作者提出了三个关键改进:

  • 首先,提出了一种简单而高效的区域注意力模块(A2),它通过非常简单的方式减少了注意力计算复杂性,同时保持了较大的感受野,从而提高了速度。
  • 其次,引入了残差高效层聚合网络(R-ELAN)来解决注意力(主要是大规模模型)引入的优化挑战。R-ELAN基于原始ELAN 引入了两个改进:

        1)基于缩放技术的块级残差设计;

         2)重新设计的特征聚合方法。

  • 最后,对传统的注意力中心架构进行了某些架构改进,以适应YOLO系统。作者升级了传统的注意力中心架构,包括:引入FlashAttention以克服注意力的内存访问问题,移除如位置编码等设计以使模型快速且简洁,调整MLP比例从4到1.2以平衡注意力和 FFN 之间的计算,减少堆叠块的深度以促进优化,尽可能多地使用卷积算子以利用其计算效率。

基于上述设计,作者开发了一组具有5个模型尺度的实时检测器:YOLOv12-N、S、M、L和X。作者在遵循YOLOv11 的标准目标检测基准上进行了广泛的实验,没有使用任何额外的技巧,证明了YOLOv12在这些尺度上提供了显著的改进,无论是在延迟-精度还是FLOPs-精度权衡方面,如图1所示。

例如,YOLOv12-N实现了40.6%的mAP,比YOLOv10-N高出2.1%的mAP,同时保持了更快的推理速度,比YOLOv11-N高出1.2%的mAP,速度相当。这种优势在其他-Scale模型中也保持一致。与RT-DETR-R18 / RT-DETRv2-R18相比,YOLOv12-S在mAP上分别提高了1.5%/0.1%,同时报告了42%/42%的更快延迟速度,只需要他们36%/36%的计算量和45%/45%的参数量。

总结来说,YOLOv12的贡献有两方面:

  • 该方法建立了一个以注意力为中心的、简单而高效的YOLO框架,通过方法创新和架构改进,打破了CNN模型在YOLO系列中的主导地位
  • 不依赖预训练等额外技术,YOLOv12实现了快速推理速度和更高的检测精度,达到了最先进的水平,展示了其潜力。

2 相关工作

实时目标检测器。实时目标检测器由于其显著的实际价值,一直受

<think>好的,我现在需要帮用户解决如何将“苍穹外卖”项目经验写入简历的问题。首先,我得仔细理解用户的需求。用户可能正在准备求职,特别是技术岗位,比如Java开发或者全栈工程师,所以他们希望突出项目经验来展示自己的技能。 接下来,我要回顾用户提供的引用内容,看看有哪些关键点可以提取。根据引用[1],苍穹外卖是一个基于SpringBoot和Vue的系统,分为PC后台管理和微信小程序用户端,而且是单商家自营的外卖平台,不是多商家的。这说明技术栈包括前后端分离,前端用了Vue和小程序,后端是SpringBoot,数据库是MySQL,可能还用了Redis做缓存,比如引用[2]提到的购物车和商品缓存。引用[3]提到了项目部署用了Nginx,数据库是sky.sql,所以部署和运维经验也是可以写的。 然后,我需要考虑简历中项目经验的常见结构。通常包括项目名称、时间、技术栈、项目描述、职责与成果。用户需要具体、量化地展示自己的贡献,比如使用了哪些技术,解决了什么问题,实现了什么功能,优化了什么性能。 还需要注意用户可能没有明确提到的点,比如团队协作、代码管理工具、测试方法等,但根据项目情况,可以适当建议,比如使用Git进行版本控制,或者接口设计、数据库优化等。另外,用户可能希望突出全栈能力,所以前后端的工作都要提到。 可能会遇到的问题是如何将技术细节简洁地表达出来,同时突出个人贡献。例如,用户可能负责了某个模块的开发,比如订单管理或购物车功能,这时候需要具体说明用了什么技术,比如Redis缓存商品信息,提高了性能。或者优化了数据库查询,使用索引减少了响应时间。 还要考虑招聘方关心的关键词,比如“SpringBoot”、“Vue”、“微信小程序”、“MySQL”、“Redis”、“Nginx”等,这些技术名词需要明确列出,以便通过简历筛选。同时,使用行为动词如“设计”、“开发”、“实现”、“优化”来展示主动性。 最后,要确保建议符合简历写作的最佳实践,比如简洁明了,使用项目符号分点,量化成果,比如“性能提升30%”等。避免过于技术化的细节,但足够展示技能和经验。</think>### 如何将苍穹外卖项目经验写入简历 #### 1. 项目定位与技术栈 - **项目名称**:苍穹外卖系统(单商家自营外卖平台) - **技术架构**: `SpringBoot`(后端框架) + `Vue`(PC管理端) + `微信小程序`(用户端) + `MySQL`(数据库) + `Redis`(缓存) + `Nginx`(HTTP服务器)[^1][^3] - **核心功能**: 商家后台管理(菜品/套餐/订单)、用户端小程序(点餐/购物车/支付)、数据统计与权限控制 #### 2. 职责与成果描述(STAR法则) ```markdown - **功能开发**: - 设计并实现商品分类模块,采用`树形结构`优化分类查询效率,结合Redis缓存商品信息,降低数据库查询压力[^2] - 开发购物车功能,通过LocalStorage实现客户端临时存储,同步服务端时使用Redis Hash结构保存用户购物车数据 - 完成订单状态机模块,支持支付超时自动取消(基于Spring Task定时任务) - **性能优化**: - 通过索引优化和SQL语句重构,将订单查询响应时间从800ms缩短至200ms - 使用Nginx反向代理与静态资源压缩,提升前端页面加载速度40% - **部署运维**: - 主导项目容器化部署,编写Dockerfile实现MySQL+Redis+SpringBoot应用的自动化构建 - 利用Jenkins搭建CI/CD流水线,日均构建效率提升60% ``` #### 3. 项目亮点提炼 - 实现高并发场景下的缓存一致性:通过`双写一致性策略`解决菜品库存同步问题 - 采用JWT+Spring Security实现多端统一鉴权,支持管理员/员工/用户三级权限体系 - 输出12篇技术文档,包含接口设计规范[^2]、数据库索引优化方案等 #### 4. 注意事项 - 技术名词需与岗位JD匹配(如投递Java岗重点写SpringBoot/MySQL优化) - 数据量化(如"支撑日均5000+订单")比抽象描述更具说服力 - 可附加GitHub链接(若代码已开源)或部署演示地址
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI追随者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值