快速幂

本文深入讲解了快速幂算法,一种高效计算a^b%m的方法,适用于b为大数的情况。文章详细介绍了算法的基本原理,包括如何通过二分思想将问题转化为更小的子问题,以及递归实现的细节。此外,还特别强调了算法实现中需要注意的几个关键点,如避免重复计算、初始值的处理和特殊边界条件。

给定三个正整数a,b,m(a<10^9,b<10^18,1<m<10^9),求a^b%m

 注意到,b的取值,如果简单的直接计算a^b那肯定会超时。所以我们采取快速幂的做法。

快速幂,基于二分的思想,基本原理如下:

1.如果b是偶数,那么a^{b}=a^{b/2}*a^{b/2};

2.如果b是奇数,那么a^{b}=a*a^{b-1}

显然无论b是奇数,最后都是变为偶数,进行二分处理。基于以上思路,我们容易想到递归的算法,临界条件是当b=0,返回1.

long long binaryPow(ll a,ll b,ll m)
{
    if(b==0) return 1;
    if(b%2==1) return a*binaryPow(a,b-1,m)%m;    //对每一次都进行模计算,减少数据规模
    else{
        ll temp=binaryPow(a,b/2,m);
        return temp*temp%m;
}

注意

1. 最后我们不直接return binaryPow(a,b/2,m)*binaryPow(a,b/2,m),因为如果这样写会调用两次binarryPow(a,b/2,m);

2.如果初始时a>=m,那么我们要在进入函数先让a=a%m;

3.如果m==1,那么直接在函数外判断等于0

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值