洛谷 P1226:【模板】快速幂

【题目来源】
https://www.luogu.com.cn/problem/P1226

【题目描述】
给你三个整数 a,b,p,求 a^b mod p。

【输入格式】
输入只有一行三个整数,分别代表 a,b,p。

【输出格式】
输出一行一个字符串 a^b mod p=s,其中 a,b,p 分别为题目给定的值,s 为运算结果。

【输入样例】
2 10 9

【输出样例】
2^10 mod 9=7

【说明/提示】
样例解释:2^10 =1024,1024 mod 9=7。
数据规模与约定:对于 100% 的数据,保证 0≤a,b<2^31,a+b>0,2≤p<2^31。

【算法分析】
● 快速幂,又称二进制取幂,是一个以 O(logn) 的时间复杂度计算 a^{n} 的
小技巧,而暴力的计算需要 O(n) 的时间复杂度。

● 快速幂的原理?
答:快速幂的原理为“将求幂的任务按照指数 n 的
二进制表示分割成更小的任务”。例如:
3^{7}=3^{111_{(2)}}=3^{2^2} \times 3^{2^1} \times 3^{2^0}=3^4 \times 3^2\times 3^1
3^{11}=3^{1011_{(2)}}=3^{2^3} \times 3^{2^1} \times 3^{2^0}=3^8 \times 3^2\times 3^1
因为 n\left \lfloor log_2n \right \rfloor+1 个二进制位,因此当知道了 a^1, a^2, a^4, a^8, \dots, a^{2^{\lfloor \log_2 n \rfloor}} 后,我们只需计算 O(log n) 次乘法就可以计算出 a^n


● 快速幂经典代码

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

int fastPow(LL a,LL n) {
    LL ans=1;
    while(n){
        if(n & 1) ans=ans*a;
        n>>=1;
        a=a*a;
    }
    return ans;
}

int main() {
    int a,n;
    cin>>a>>n;
    cout<<fastPow(a,n)<<endl;
}

/*
in:6 8
out:1679616
*/

● 带取模的快速幂代码
计算过程中,为了
防止溢出,需要进行“取模”运算,其运算规则如下:
(a+b)%p=(a%p+b%p)%p
(a-b)%p=(a%p-b%p)%p
(a*b)%p=(a%p*b%p)%p


【算法代码】

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

int fastPow(LL a,LL b,LL p) {
    LL ans=1;
    while(b){
        if(b & 1) ans=ans*a%p;
        b>>=1;
        a=a*a%p;
    }
    return ans%p;
}

int main() {
    int a,b,p;
    cin>>a>>b>>p;
    cout<<a<<"^"<<b<<" mod "<<p<<"="<<fastPow(a,b,p)%p;
}

/*
in:2 10 9
out:2^10 mod 9=7
*/






【参考文献】
https://www.cnblogs.com/littlehb/p/15588930.html
https://oi-wiki.org/math/binary-exponentiation/


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值