题目:
L1-6 整除光棍 (20 分)
这里所谓的“光棍”,并不是指单身汪啦~ 说的是全部由1组成的数字,比如1、11、111、1111等。传说任何一个光棍都能被一个不以5结尾的奇数整除。比如,111111就可以被13整除。 现在,你的程序要读入一个整数x,这个整数一定是奇数并且不以5结尾。然后,经过计算,输出两个数字:第一个数字s,表示x乘以s是一个光棍,第二个数字n是这个光棍的位数。这样的解当然不是唯一的,题目要求你输出最小的解。
提示:一个显然的办法是逐渐增加光棍的位数,直到可以整除x为止。但难点在于,s可能是个非常大的数 —— 比如,程序输入31,那么就输出3584229390681和15,因为31乘以3584229390681的结果是111111111111111,一共15个1。
输入格式:
输入在一行中给出一个不以5结尾的正奇数x(<1000)。
输出格式:
在一行中输出相应的最小的s和n,其间以1个空格分隔。
输入样例:
31
输出样例:
3584229390681 15
如果用python的话直接硬算就行,但是我的没有100%全过。。。
思路:大数除法,模拟除法运算
比如:12345/7
可以这样看ans=0
ans=ans * 10+1%7;
ans=ans * 10+2%7;
ans=ans * 10+3%7;
…
最ans后就是余数
这题同理,我们不需要把11111…(很多1)构造出来,只要按照上面不停的得到余数,然后输出,直到余数为0停止就好,就一个特殊情况要处理,就是第一位不商不为0(前导零的情况)
code:
#include<iostream>
using namespace std;
int main()
{
int n;
cin >> n;
int flag = 0;//用来判断前导零
int now = 0;
int len = 0;//长度
while (1)
{
now = now * 10 + 1;
if(flag || now / n)//flag用完一次就没用了
{
flag=1;
cout<<now/n;
}
len++;
now %= n;
if (now == 0)//可以整除时
{
cout <<" " << len << endl;
break;
}
}
return 0;
}
如果有问题希望大家指出,万分感激!