自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Lison_Zhu's Blog

漂亮的程序很多,有趣的程序员太少

原创 arxiv怎么读

arXiv 同''archive'',即阿卡唔~

2020-03-03 15:11:38

阅读数 17

评论数 0

原创 模态融合中的add和concat

concat是通道数增加 add是通道数不变,特征图相加

2019-12-23 11:13:23

阅读数 34

评论数 0

原创 希沃白板制作刮一刮

1.去百度搜索希沃白板5,下载后 进行安装 2.安装完成后打开该软件 点击新建课件 选择一个模板,双击 比如选择第三个 点击形状 选择一个长方形,然后拖入主面板 可以选中该长方形,右键点击复制,多复制几个 可以点击右边的填充,长方形换个颜色 ...

2019-12-14 18:01:44

阅读数 4347

评论数 2

原创 Neural Architecture Search at CVPR 2019

英文原博: https://drsleep.github.io/NAS-at-CVPR-2019/ 中文翻译: https://mp.weixin.qq.com/s/c7S_hV_8iRhR4ZoFxQYGYQ 1.Auto-DeepLab: Hierarchical Neural ...

2019-11-26 09:52:16

阅读数 123

评论数 0

原创 scp -r跨服务器传数据

scp -r jiqing@210.45.215.179://home/jiqing/MANet/ /DATA/zhulishun/

2019-11-24 20:14:23

阅读数 45

评论数 0

原创 tracking跟踪标准,PR、SR

We employ the widely used tracking evaluation metrics including precision rate (PR) and success rate (SR) for quantitative performance evaluation. I...

2019-11-21 22:38:52

阅读数 42

评论数 0

原创 ATOM: Accurate Tracking by Overlap Maximization

关于ATOM的两篇解读文章 1.https://blog.csdn.net/hey_youngman/article/details/90638808 2.https://blog.csdn.net/sinat_27318881/article/details/84668861

2019-11-17 12:51:03

阅读数 11

评论数 0

原创 OTB评测标准及代码实现

1.修改路径,transferresult.m 第一个路径是数据集,第二个是python文件跑出的txt文件的路径 2.python跑出来的txt文件需要转成mat文件 运行transferresult.m文件 3.把之前的文件删除 4.运行 5.运行 就可以画出PR...

2019-11-04 17:10:39

阅读数 45

评论数 0

原创 Siamese network

刚刚看了著名up主“翔翔大作战”的一个视频,觉得很有意思,简单的说就是把语音或者音乐倒放会产生完全不同的听觉感受。 翔翔大作战之周杰伦倒放 然后突发奇想,既然正放和倒放的信息完全不同,那是不是可以在考虑语音加密的时候直接用倒放。接着又联想到我最近的工作,关于tracking,那么我们是否能够利...

2019-10-21 22:28:56

阅读数 97

评论数 0

原创 pytorch指定使用GPU编号

方法1: import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" #使用1号 方法2:手动敲入 CUDA_VISIBLE_DEVICES = 1

2019-10-17 17:45:55

阅读数 37

评论数 0

原创 60分钟快速掌握pytorch

介绍pytorch的主要学习部分,做到心中有数:60分钟速成pytorch 剩下的具体细节可以参考pytorch中文文档:pytorch中文文档

2019-10-14 17:31:11

阅读数 17

评论数 0

转载 numpy.random.seed()

seed()函数是用来控制生成有规律随机数的。 当()中有数值时,生成与该值相关的随机数 import numpy as np 例如, 当()中的值为0时, np.random.seed(0) print(np.random.randn(1, 3)) np.random.seed(0...

2019-09-24 14:41:14

阅读数 15

评论数 0

原创 机器学习为什么要用概率论

https://www.cnblogs.com/jialin0421/p/8988834.html

2019-09-22 20:46:35

阅读数 64

评论数 0

原创 boosting算法和AdaBoost算法

...

2019-09-22 20:19:11

阅读数 42

评论数 0

转载 AdaBoost算法

https://blog.csdn.net/Lu597203933/article/details/38666303

2019-09-20 09:57:21

阅读数 9

评论数 0

原创 Noisy OR (NOR)model

Noisy OR (NOR)model 如下图所示,Y结点有父亲结点Z1到Zk,OR关系的意思即只有Z1到Zk全部不发生,那么才有Y=0,而Zi是否发生受到随机变量Xi的影响,如果把最后Y看成教授的推荐信,那么X1到Xk可以看做学生的某项表现,学生第i项表现优异的情况下被教授欣赏的概率为λi,这...

2019-09-19 21:27:01

阅读数 175

评论数 0

原创 对数似然函数理解

对数似然函数(log likelihood) 机器学习里面,对模型的训练都是对Loss function进行优化,在分类问题中,我们一般使用最大似然估计(Maximum likelihood estimation)来构造损失函数。对于输入的x,其对应的类标签为t,我们的目的是找到使p(t|x)最...

2019-09-19 21:10:27

阅读数 199

评论数 0

转载 最大似然估计

极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下: 贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: 其中:p(w):为先验概率,表示每种类别分布的概率;:类条件...

2019-09-17 15:04:18

阅读数 67

评论数 0

转载 目标追踪(tracking)简介

视觉目标跟踪是计算机视觉中的一个重要研究方向,有着广泛的应用,如:视频监控,人机交互,无人驾驶等。过去二三十年视觉目标跟踪技术取得了长足的进步,特别是最近两年利用深度学习的目标跟踪方法取得了令人满意的效果,使目标跟踪技术获得了突破性的进展。本文旨在简要介绍:目标跟踪的基本流程与框架,目标跟踪存在的...

2019-09-12 15:04:08

阅读数 1535

评论数 3

原创 python常用函数(更新)

eval() 函数用来执行一个字符串表达式,并返回表达式的值。 >>>x = 7 >>> eval( '3 * x' ) 21 >>> eval('pow(2,2)') 4 >>> ...

2019-09-11 16:21:17

阅读数 21

评论数 0

原创 IP 地址无效化

给你一个有效的 IPv4 地址address,返回这个 IP 地址的无效化版本。 所谓无效化IP 地址,其实就是用"[.]"代替了每个 "."。 示例 1: 输入:address = "1.1.1.1" 输出:"1[....

2019-09-10 11:16:22

阅读数 32

评论数 0

原创 宝石与石头

No.1 给定字符串J代表石头中宝石的类型,和字符串S代表你拥有的石头。S中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石。 J中的字母不重复,J和S中的所有字符都是字母。字母区分大小写,因此"a"和"A"是不同类型的石头。 ...

2019-09-05 20:15:36

阅读数 20

评论数 0

原创 torch.nn.Conv2d参数

torch.nn.Conv2d   用于搭建卷积神经网络的卷积层,主要的输入参数有输入通道数、输出通道数、卷积核大小、卷积核移动步长和Padding的值。其中,输入通道数的数据类型是整型,用于确定输入数据的层数;输出通道数的数据类型也是整型,用于确定输出数据的层数;卷积核大小的数据类型是整型,用...

2019-09-04 19:27:18

阅读数 591

评论数 0

转载 深度学习中的采样以及采样算法

深度学习中的采样以及采样算法

2019-08-31 10:48:24

阅读数 133

评论数 0

原创 RoIPooling和RoIAlign

一)、RoIPooling 这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使...

2019-08-31 10:46:15

阅读数 22

评论数 0

转载 重采样--Gumbel Softmax

重采样--Gumbel Softmax

2019-08-31 10:44:22

阅读数 138

评论数 0

原创 计算机视觉专业术语大全(实时更新)

MOT:Multiple Object Tracking 多目标跟踪 Appearancemodel:外观模型,在多目标跟踪中用来提取有鉴别力的特征。 MIL:Multiple Instance Learning多示例学习 BaseLine 你训练一个模型,获得了80%的准确率,你觉得很高...

2019-08-29 14:59:12

阅读数 103

评论数 0

原创 Customizable Architecture Search for Semantic Segmentation

本文提出了一种自动生成语义图像分割的网络结构的方法,称为面向语义分割的可定制体系结构搜索(CAS)。与以前手动设计网络不同,该方法使用了一个轻量级的框架,并自动搜索作为网络构建块的优化计算单元。此外,在优化体系结构时,CAS还将实际应用的约束考虑到了,所以称为可定制的结构搜索,能够在分割性能和可用...

2019-08-29 14:56:47

阅读数 111

评论数 0

转载 超参数:学习率、权重衰减、动量

https://blog.csdn.net/rocling/article/details/92828799

2019-08-14 11:01:33

阅读数 88

评论数 0

转载 pytorch训练和测试CNN

https://www.jianshu.com/p/e4c7b3eb8f3d

2019-08-14 10:26:04

阅读数 85

评论数 0

转载 pytorch使用多个GPU并行跑

https://blog.csdn.net/gaishi_hero/article/details/81139045

2019-08-13 19:33:13

阅读数 191

评论数 0

原创 MDNet框架大概简介

大体可以分为三个步骤: 1.离线学习,获得视频跟踪的通性(即所有的跟踪目标,虽然类别各不相同,但其实他们应该都存在某种共性,这是需要网络去学的,如:对光照变化,运动模糊,尺寸变化的鲁棒性等。) 2.在线更新网络后几层(新建一个fc6层,在线f微调fc4-fc6层,conv1-conv3保持不变...

2019-08-13 15:52:00

阅读数 39

评论数 0

原创 Darts解读

如果没看过这篇paper,可以先去看一下翻译过的版本Darts译文 整篇paper主要分了三大部分,分别是INTRODUCTION、DIFFERENTIABLE ARCHITECTURE SEARCH、EXPERIMENTS AND RESULTS,其中最重要的部分是第二部分——可微的结构搜索。...

2019-08-13 09:53:47

阅读数 316

评论数 0

原创 Darts译

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH ABSTRACT: 本文以一种可微的方式来描述该任务,从而解决了体系结构搜索的可扩展性挑战。与传统的在离散、不可微的搜索空间上应用进化或强化学习方法不同,我们的方法是基于结构表示的连续松弛,允许使用梯度下降有效...

2019-08-13 09:12:02

阅读数 127

评论数 0

转载 梯度下降

本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。...

2019-08-12 11:05:44

阅读数 39

评论数 0

原创 代价函数,损失函数,目标函数

定义: 损失函数(Loss Function ):定义在单个样本上的,计算的是一个样本的误差。 代价函数(Cost Function ):定义在整个训练集上的,是所有样本误差的平均,计算的是损失函数的平均。 有的地方将损失函数和代价函数没有进行区分,也就是损失函数 = 代价函数。 目标函数...

2019-08-12 11:02:47

阅读数 52

评论数 0

原创 NAS综述

https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/82321884

2019-08-11 17:22:51

阅读数 257

评论数 0

转载 图像处理中的Mask掩模

1.什么是掩膜 首先我们从物理的角度来看看mask到底是什么过程。 在半导体制造中,许多芯片工艺步骤采用光刻技术,用于这些步骤的图形“底片”称为掩膜(也称作“掩模”),其作用是:在硅片上选定的区域中对一个不透明的图形模板遮盖,继而下面的腐蚀或扩散将只影响选定的区域以外的区域。 图像掩膜与其类似,用...

2019-08-10 16:39:47

阅读数 105

评论数 0

转载 目标检测之R-CNN/Fast R-CNN/Faster R-CNN

目标检测是深度学习的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤: 1、分类,识别物体是什么 2、定位,找出物体在哪里 除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示: 这个问题并不是那么容易解决,由于物体的尺寸变化范围很大、摆放角度多...

2019-08-10 16:28:46

阅读数 41

评论数 0

原创 深度学习中什么是端到端的学习/训练

传统的图像识别问题往往通过分治法将其分解为预处理,特征提取和选择,分类器设计等若干步骤。分治法的动机是将图像识别的母问题分解为简单、可控且清晰的若干小的子问题。不过分步解决子问题时,尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。 深度学习提供了一种端到端的学...

2019-08-10 16:09:25

阅读数 803

评论数 0

提示
确定要删除当前文章?
取消 删除