自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(3)
  • 收藏
  • 关注

原创 SVM入门

SVM入门SVM是支持向量机,那么什么是支持向量?样本中距离超平面最近的一些点,这些点叫做支持向量。支持向量机的推导SVM 想要的就是找到各类样本点到超平面的距离最远,也就是找到最大间隔超平面。任意超平面可以用下面这个线性方程来描述:二维空间点 (x,y) 到直线 的距离公式是:扩展到 n 维空间后,点 到直线 的距离为:其中 。如图所示,根据支持向量的定义我们知道,支持向量到超平面的距离为 d,其他点到超平面的距离大于 d。于是我们有这样的一个公式:稍作转化可以得

2020-08-26 21:13:27 351

原创 决策树入门

决策树入门决策树介绍决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先看男方是否有房产,如果有房产再看是否有车产,如果有车产再看是否有稳定工作……最后得出是否要深入了解的判断。决策树的主要优点:具有很好的解释性,模型可以生成可以理解的规则。可以发现特征的重要程度。模型的计算复杂度较低。决策树的主要缺点:模型容易过拟合,需要采用减枝技术处理。不能很好利

2020-08-22 20:14:20 244

原创 逻辑回归入门

逻辑回归入门逻辑回归定义逻辑回归其实是实现了一个决策边界:对于函数,当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值。对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的ω。从而得到一个针对于当前数据的特征逻辑回归模型。而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。逻辑回归实践第一步 库函数引入## 基础函数库import numpy as np import pandas as

2020-08-20 18:34:15 215

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除