发挥不是太好,感觉这次校赛难度挺大的,主要是最后的三道题难度有点高(也可能是自己太菜)。忘了考校赛的题干,所以只能先把前七题写一下,后三题估计要研究一阵,而且每一道都够写一篇文章的了(可能会写在难题集里)。
A
这次就连水题都这么难吗?再加上题干输出部分出了问题坑了我一会(我不会告诉你是我英文的九写错了)。
贴代码
# include <string.h>
# include <stdio.h>
# include <algorithm>
using namespace std;
int main()
{
int T;
scanf("%d", &T);
char s[30];
while(T--)
{
scanf("%s", s);
if(!strcmp(s , "zero"))
printf("ling\n");
else if(!strcmp(s , "one"))
printf("yi\n");
else if(!strcmp(s , "two"))
printf("er\n");
else if(!strcmp(s , "three"))
printf("san\n");
else if(!strcmp(s , "four"))
printf("si\n");
else if(!strcmp(s , "five"))
printf("wu\n");
else if(!strcmp(s , "six"))
printf("liu\n");
else if(!strcmp(s , "seven"))
printf("qi\n");
else if(!strcmp(s , "eight"))
printf("ba\n");
else if(!strcmp(s , "nine"))
printf("jiu\n");
else if(!strcmp(s , "ten"))
printf("shi\n");
}
return 0;
}
B
读了两遍明白了(今年的比2017年的不友好多了)随便写写即可
(特别备注,这道题升级了数据,导致之前的代码用不了了,这里已经做了更新 5/10/2018)
贴代码
# include <stdio.h>
# include <string.h>
inline int max(int a , int b)
{
return (a > b) ? a : b;
}
int main()
{
char s[30], c[30];
int n[26];
int m[26];
while(~scanf("%s", s))
{
memset(n , 0 , sizeof(n));
int i, j;
for(i = 0 ; s[i] ; i++)
n[s[i] - 'a']++;
int N;
scanf("%d", &N);
int ans = 0;
for(i = 0 ; i < N ; i++)
{
memset(m , 0 , sizeof(m));
scanf("%s", c);
for(j = 0 ; c[j] ; j++)
{
m[c[j] - 'a']++;
if(m[c[j] - 'a'] > n[c[j] - 'a'])
break;
}
if(!c[j])
ans = max(ans , j);
}
printf("%d\n", ans);
}
return 0;
}
C
稍稍推一下就知道最后那个组里面会有i - 1张第i大的数字,一个一个数即可。
贴代码
# include <stdio.h>
# include <algorithm>
using namespace std;
const int MAX_N = 2500;
int A[MAX_N];
int main()
{
int T;
int N, K;
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &N, &K);
int i;
for(i = 0 ; i < N ; i++)
scanf("%d", &A[i]);
sort(A , A + N);
for(i = 1 ; i < N ; i++)
{
if(K <= i)
{
printf("%d\n", A[N - 1 - i]);
break;
}
K -= i;
}
}
return 0;
}
D
哲学题,题干已经提示得很明显了,没有任何一个值是独特的,所以必然是平均值。
贴代码
# include <stdio.h>
# include <algorithm>
using namespace std;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int N;
int sum = 0;
int t;
scanf("%d", &N);
int i;
for(i = 0 ; i < N ; i++)
{
scanf("%d", &t);
sum += t;
}
printf("%d\n", sum / N);
}
return 0;
}
E
跟xdoj里的1113 Too Light差不多,算是那道题的弱化版。一个递推既可以搞定,考虑以i结尾除3余i的有多少即可。
贴代码
# include <stdio.h>
# include <algorithm>
# include <string.h>
using namespace std;
typedef long long ll;
const int MAX_N = 1e6;
char s[MAX_N + 10];
ll dp[2][3];
int main()
{
while(~scanf("%s", s))
{
memset(dp , 0 , sizeof(dp));
ll ans = 0;
ll * now = dp[0], * next = dp[1];
int i, j;
for(i = 0 ; s[i] ; i++)
{
now[0]++;
next[0] = next[1] = next[2] = 0;
for(j = 0 ; j < 3 ; j++)
{
next[(j * 2 + s[i] - 48) % 3] += now[j];
}
ans += next[0];
swap(now , next);
}
printf("%lld\n", ans);
}
return 0;
}
F
又是哲学题,随便瞎蒙了一个算法就写了,结果竟然一遍过,神奇。
我的算法可以认为是一个贪心,每次如果要踢人就踢掉之后出现次数最少的那个,这样用一个set来维护即可。
贴代码
# include <stdio.h>
# include <algorithm>
# include <set>
using namespace std;
typedef pair<int , int> P;
const int MAX_N = 1e5;
int A[MAX_N + 1];
int B[MAX_N + 1];
int main()
{
int N, M, Q;
while(~scanf("%d %d %d", &N, &M, &Q))
{
fill(A , A + M + 1 , 0);
int i;
for(i = 0 ; i < Q ; i++)
{
scanf("%d", &B[i]);
A[B[i]]++;
}
set<P> s;
int num = 0;
bool ok[MAX_N + 1] = {0};
int ans = 0;
for(i = 0 ; i < Q ; i++)
{
if(!ok[B[i]])
{
A[B[i]]--;
ans++;
ok[B[i]] = 1;
if(num < M)
{
s.insert(P(A[B[i]] , B[i]));
}
else
{
ok[(*s.begin()).second] = 0;
s.erase(*s.begin());
s.insert(P(A[B[i]] , B[i]));
}
}
else
{
s.erase(P(A[B[i]] , B[i]));
A[B[i]]--;
s.insert(P(A[B[i]] , B[i]));
}
}
printf("%d\n", ans);
}
return 0;
}
G
因为n的值太大了所以可以排除一切笨办法,包括递归和搜索,那就只能找规律题,先用笨办法打出前一百个的值,干瞪眼法瞪了一会儿之后发现只要把每个素因子减一相加(我也不知道为什么,完全是看出来的),所以只要打一个1000的素数表就行了。
贴代码
# include <stdio.h>
# include <algorithm>
# include <queue>
using namespace std;
int N, T;
int p[1000], num;
bool used[1001];
void pri(int n)
{
num = 0;
used[0] = used[1] = 1;
int i, j;
for(i = 2 ; i <= n ; i++)
{
if(!used[i])
p[num++] = i;
for(j = 0 ; j < num && i * p[j] < n ; j++)
{
used[i * p[j]] = 1;
if(i % p[j] == 0)
break;
}
}
}
void solve()
{
int i;
int ans = 0;
for(i = 0 ; i < num && N > 1 ; i++)
{
while(N % p[i] == 0)
{
N /= p[i];
ans += p[i] - 1;
}
}
ans += N - 1;
printf("%d\n", ans);
}
int main()
{
pri(1000);
scanf("%d", &T);
while(T--)
{
scanf("%d", &N);
solve();
}
return 0;
}
至于后三题先简单说说当前的想法吧
H
最难的一道,没有人做出来,我的初始想法就是一个状压dp,然后再用一下快速幂,结果这么搞完之后才发现一个致命的问题,就是这个环有很严重的重复问题,这个减少的个数和循环节有关,相当于每种情况应当除以循环节的长度,这样这题就变成了一个很复杂的因式分解和容斥问题,就很难解决了,鉴于这个巨大的n,所以肯定要用到快速幂,那么怎么改要么就是递推式的优化,要么就是很高明的容斥了,反正我还在思考。
I
一道让我发疯的题,感觉大体知道怎么做但是就是没有读懂题目具体的意思,总之那个示例的值是死活凑不出来,不过这道题十之八九是考的线段树,不只是线段树元素之和,还包括平方之和,当然这个是可以解决的,我当时就想到了,维护三个值,初始元素之和,初始元素平方之和,以及当前线段元素全部加的数,这三个足以算出当前平方和了,不过没读懂具体的意思的确是有点遗憾。
J
感觉是一代模拟,没怎么仔细看,估计要使用sscanf了
行吧,这次现场赛的确看出了自己的不足,且行且珍惜把。