「2018ACM/ICPC亚洲区域赛沈阳站现场赛 L」 Machining Disc Rotors【计算几何】

L. Machining Disc Rotors

time limit per test 8 seconds
memory limit per test 1024 megabytes
input standard input
output standard output

EdwardEdward is a worker for AluminumAluminum CyclicCyclic MachineryMachinery. His work is to control the mechanical arms to cut out some parts of the mould material. Here is a brief introduction to his work.

Suppose the operation panel for him is a Euclidean plane with the coordinate system. Originally the mould is a disc whose centre coordinates is (0,0)(0,0) and of radius RR. EdwardEdward controls nn different mechanical arms to cut out and erase those all of the mould within their affected areas. The affected area of the ithi-th mechanical arm is a circle whose centre coordinate is (xi,yi)(x_i,y_i) and of radius rir_i. In order to obtain the highly developed product, it is guaranteed that the affected areas of any two mechanical arms share no intersection and no one has an affected area containing the whole original mould.

Your task is to determine the diameter of the residual mould. Here the diameter of a subset, which may not be convex, over the Euclidean plane is the supremum (i. e. the least upper bound) of distances between every two points in the subset. Here is an illustration of the sample.

The input contains several test cases, and the first line contains a positive integer TT indicating the number of test cases which is up to 50005000.

For each test case, the first line contains two integers nn and RR, where 1n1001\leq n\leq 100 and 1R10001\leq R\leq 1000.

The following nn lines describe all mechanical arms controlled by Edward, the ithi-th of which contains three integers xi,yix_i,y_i and rir_i describing the affected area of the ithi-th mechanical arm, where 1000xi,yi1000−1000\leq x_i,y_i\leq 1000 and 1ri1000.1\leq r_i\leq 1000.


For each test case, output a line containing “Case #x: y” (without quotes), where xx is the test case number starting from 11, and yy is the diameter of the remaining area with an absolute or relative error of at most 10910^{−9}. Precisely speaking, assume that your answer is aa and and the jury’s answer is bb, your answer will be considered correct if abmax{1,b}109\frac{|a−b|}{max\{1,|b|\}}\leq 10^{−9}, where max{x,y}max\{x,y\} means the maximum of xx and yy and x|x| means the absolute value of xx.


3 10
0 12 10
11 -6 10
-11 -6 10
Case #1: 18.611654895000252


  • 就是有一个圆心在(0,0)(0,0)的且半径为rr的圆ss,另外有nn个不相交的圆,求将ss除去ss与其他每一个圆的相交部分后的直径


  • 显然求出所有交点,两两枚举求distancedistance取最大值即可,然后特判一下有没有一个弧是大于180180度的,或者有某一个圆弧关于原点的对称弧与另外一个弧对称,这两种情况答案都是2×r2\times r
  • 然后需要注意处理好弧的方向问题,这是重点



using namespace std;
#define eps 1e-9
const int maxn=505;
#define pi acos(-1.0)

int sgn(double k) {
    return k<-eps?-1:(k<eps?0:1);

double Sqrt(double k) 
    if(sgn(k)<=0) return 0;
    return sqrt(k);

double Acos(double a)
    if(a>=1) return 0;
    if(a<=-1) return pi;
    return acos(a);

struct point{
    double x,y;int mark;
    point(double a=0,double b=0) {
    point operator+(point other) {
        return point(x+other.x,y+other.y);
    point operator-(point other) {
        return point(x-other.x,y-other.y);
    point operator*(double k) {
        return point(x*k,y*k);
    double operator*(point other) {
        return x*other.x+y*other.y;
    double operator^(point other) {
        return x*other.y-y*other.x;
    friend double len(point p) {
        return Sqrt(p.x*p.x+p.y*p.y);
    friend double len2(point p) {
        return p.x*p.x+p.y*p.y;
    friend double angle(point p) {
        return atan2(p.y,p.x);

    friend int point_to_line(point p,point s,point e) {
        return -sgn((e-s)^(p-s));
    friend double angle(point p1,point p2) {
       if(point_to_line(p2,point(0,0),p1)<=0) return Acos((p1*p2)/len(p1)/len(p2));
       else return 2*pi-Acos((p1*p2)/len(p1)/len(p2));
    friend point extend(point p,double l) {
        if(sgn(len(p))==0) return point(0,l);
        return point(p*(l/len(p)));

    friend point rotate(point p1,point p2,double a){
        point vec=p2-p1;
        double xx=vec.x*cos(a)+vec.y*sin(a);
        double yy=vec.y*cos(a)-vec.x*sin(a);
        return point(p1.x+xx,p1.y+yy);

struct circle{
    point o;
    double r;
    circle(point a,double b) {
    circle(double a=0,double b=0,double c=0) {
    //点和圆的关系:0:圆内 1:圆上 2:圆外
    friend int point_to_circle(point p,circle c) {
        return 1+sgn(len(p-c.o)-c.r);
    //圆c1与圆c2的关系:0:内含 1:内切 2:相交 3:外切 4:相离
    friend int circle_to_circle(circle c1,circle c2) {
        double d=len(c1.o-c2.o);
        if(sgn(d-c1.r-c2.r)>0) return 4;
        if(sgn(d-c1.r-c2.r)==0) return 3;
        if(c1.r<c2.r) swap(c1,c2);
        if(sgn(c1.r-c2.r-d)<0) return 2;
        if(sgn(c1.r-c2.r-d)==0) return 1;
        return 0;
    friend int circle_circle_cross(circle c1,circle c2,point &p1,point &p2) {
        int relation=circle_to_circle(c1,c2);
        if(relation==0||relation==4) return 0;
        double d=len(c1.o-c2.o);
        if(c1.r>c2.r) swap(c1,c2);
        double k=Acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*d*c1.r));
        if(sgn(d-c1.r-c2.r)==0||sgn(c2.r-d-c1.r)==0) return 1;
        return 2;

struct node{
    point s,e;
    node(point a,point b) {

bool cmp(point a,point b){
    return atan2(a.y,a.x)<atan2(b.y,b.x);

bool chec(node u,node v) {
    int a=sgn(v.s^u.s),b=sgn(v.s^u.e);
    int c=sgn(v.e^u.s),d=sgn(v.e^u.e);
    return (a<=0&&b>=0)||(c<=0&&d>=0);

point p[maxn];
circle c[maxn];
int n,tot,mark[maxn],num;
double r;

int main()
    int t;scanf("%d",&t);
    for(int cas=1;cas<=t;cas++) {
        scanf("%d %lf",&n,&r);
        for(int i=1;i<=n;i++) scanf("%lf %lf %lf",&c[i].o.x,&c[i].o.y,&c[i].r);
        circle check=circle(0,0,r);
        int tot=0;
        point p1,p2;
        double ans=0;
        for(int i=1;i<=n;i++) {
            int num=circle_circle_cross(check,c[i],p1,p2);
            if(num==2) {
                point mid=rotate(point(0,0),p2,angle(p1,p2)/2);
                if(point_to_circle(mid,c[i])<=1) {
                }else {
        for(int i=1;i<=tot;i++) for(int j=i+1;j<=tot;j++) ans=max(ans,len(p[j]-p[i]));
        for(int i=1;i<=tot;i++) if(p[i].mark==-1) o[++num]=node(p[i],p[i%tot+1]);
        for(int i=1;i<=num;i++) if(sgn(fabs(angle(o[i].s,o[i].e))-pi)>=0) {ans=2*r;break;}
        for(int i=1;i<=num;i++) for(int j=i+1;j<=num;j++) {
            node dui=node(o[i].s*-1,o[i].e*-1);
            if(chec(dui,o[j])||chec(o[j],dui)) {ans=2*r;break;}
        printf("Case #%d: %.15lf\n",cas,ans);
发布了152 篇原创文章 · 获赞 23 · 访问量 2万+


©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客