解题思路:建立源点0,最后我们求的是到点1的最短路径。因为有等级限制,我们只需将符合等级要求间的点设置为连通的,而不符合的点设置为不连通的。这里需要依次枚举最小等级的点。
下面是代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<map>
#include<vector>
#include<set>
#include<stack>
#include<queue>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define MAX(a,b) (a > b ? a : b)
#define MIN(a,b) (a < b ? a : b)
#define mem(a) memset(a,0,sizeof(a))
#define MAXN 105
#define INF 1000000007
int Price[MAXN],Edge[MAXN][MAXN],Level[MAXN];
int vis[MAXN], d[MAXN];
int N,M,ans;
void init()
{
mem(Price); mem(Level);
for(int i=0;i<=N;i++)
{
for(int j=0;j<=N;j++)
{
Edge[i][j] = INF;//初始化每条边都是不连通的
}
}
}
void read()
{
int i,j,X,T,TP;
for(i=1;i<=N;i++)
{
scanf("%d%d%d",&Price[i], &Level[i], &X);
for(j=0;j<X;j++)
{
scanf("%d %d", &T, &TP);
Edge[T][i] = TP;//记录边
}
Edge[0][i] = Price[i];
}
}
int dijkstra()
{
int i,j,k;
for(i=1;i<=N;i++)
{
d[i]=Price[i];//初始化到每个点的距离
}
for(i=1;i<=N;i++)
{
int tem=INF,u;
for(j=1;j<=N;j++)
{
if(vis[j]==0&&d[j]<=tem)
{
u=j;
tem=d[j];
}
}
vis[u]=1;
for(k=1;k<=N;k++)
{
if(vis[k]==0&&d[u]+Edge[u][k]<d[k])//更新相邻点
{
d[k]=d[u]+Edge[u][k];
}
}
}
return d[1];
}
int main()
{
while(~scanf("%d %d", &M, &N))
{
init();
read();
ans = INF;
for(int i=1;i<=N;i++)
{
int minLevel = Level[i];//将目前的点视作等级最低的点
for(int j=1;j<=N;j++)
{
if(Level[j] - minLevel > M || minLevel > Level[j])vis[j] = 1;//如果有比它还低的点,或者差超过M,视为不合法
else vis[j] = 0;
}
int now = dijkstra();
ans = MIN(ans, now);
}
printf("%d\n", ans);
}
return 0;
}