HDU 6356 Glad You Came(unsigned int + 线段树 )

Problem Description

Steve has an integer array a of length n (1-based). He assigned all the elements as zero at the beginning. After that, he made m operations, each of which is to update an interval of a with some value. You need to figure out ⨁ni=1(i⋅ai) after all his operations are finished, where ⨁ means the bitwise exclusive-OR operator.
In order to avoid huge input data, these operations are encrypted through some particular approach.
There are three unsigned 32-bit integers X,Y and Z which have initial values given by the input. A random number generator function is described as following, where ∧ means the bitwise exclusive-OR operator, << means the bitwise left shift operator and >> means the bitwise right shift operator. Note that function would change the values of X,Y and Z after calling.


Let the i-th result value of calling the above function as fi (i=1,2,⋯,3m). The i-th operation of Steve is to update aj as vi if aj<vi (j=li,li+1,⋯,ri), where

⎧⎩⎨⎪⎪lirivi=min((f3i−2modn)+1,(f3i−1modn)+1)=max((f3i−2modn)+1,(f3i−1modn)+1)=f3imod230(i=1,2,⋯,m).

 

 

Input

The first line contains one integer T, indicating the number of test cases.
Each of the following T lines describes a test case and contains five space-separated integers n,m,X,Y and Z.
1≤T≤100, 1≤n≤105, 1≤m≤5⋅106, 0≤X,Y,Z<230.
It is guaranteed that the sum of n in all the test cases does not exceed 106 and the sum of m in all the test cases does not exceed 5⋅107.

 

 

Output

For each test case, output the answer in one line.

 

 

Sample Input

 

4 1 10 100 1000 10000 10 100 1000 10000 100000 100 1000 10000 100000 1000000 1000 10000 100000 1000000 10000000

 

 

Sample Output

 

1031463378 1446334207 351511856 47320301347

Hint

In the first sample, a = [1031463378] after all the operations. In the second sample, a = [1036205629, 1064909195, 1044643689, 1062944339, 1062944339, 1062944339, 1062944339, 1057472915, 1057472915, 1030626924] after all the operations.

思路:x,y,z,w开unsigned int,

然后就是线段树暴力修改,维护一个区间最小值减支就行。

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>
#include <stack>
using namespace std;
typedef unsigned int ll;
#define Lson l,m,rt<<1
#define Rson m+1,r,rt<<1|1
const int maxn = 1e5+10;
const int mod=1<<30;
#define inf 0x3f3f3f3f

ll n,m;
ll a[maxn];
ll x,y,z;
ll Funtion()
{
    x=(x^(x<<11));
    x=(x^(x>>4));
    x=(x^(x<<5));
    //cout<<"3    ....."<<x<<endl;
    x=(x^(x>>14));
    //cout<<"4     ...."<<x<<endl;
    ll w=(x^(y^z));
   // w%=n;
   //cout<<"1    ..."<<w<<endl;
    x=y;
    y=z;
    z=w;
    return z;
}
ll b[maxn];
struct Tree
{
    int cnt;
    ll Maxa,Minb;
    int add;
}tree[maxn<<2];
void push_up(int rt)
{
    tree[rt].Minb=min(tree[rt<<1].Minb,tree[rt<<1|1].Minb);
}
void Build(int l,int r,int rt)
{
    tree[rt].add=0;
    if(l==r)
    {
        tree[rt].Minb=0;
        return;
    }
    int m=l+r>>1;
    Build(Lson);
    Build(Rson);
    push_up(rt);
}
void updata(int L,int R,int l,int r,int rt,ll v)
{
    if(tree[rt].Minb>=v) return;//如果最小值都比v大,那么没有必要继续更新
    if(L<=l&&R>=r)
    {
        if(tree[rt].Minb>=v)
        {
            return;
        }
        if(l==r)
        {
            if(tree[rt].Minb<v)
            {
                tree[rt].Minb=v;
            }
            return;
        }
    }
    int m=l+r>>1;
    if(L<=m) updata(L,R,Lson,v);
    if(R>m) updata(L,R,Rson,v);
    push_up(rt);
}
ll query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&R>=r)
    {
        return tree[rt].Minb;
    }
    int m=l+r>>1;
    int ans=0;
    if(L<=m)  ans+=query(L,R,Lson);
    if(R>m)  ans+=query(L,R,Rson);
    return ans;
}

#define ONLINE_JUDGE
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        freopen("out.txt","w",stdout);
    #endif
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%u%u%u%u%u",&n,&m,&x,&y,&z);
        Build(1,n,1);
        ll f1,f2,f3;
        ll l,r,v;
        for(int i=1;i<=3*m;i+=3)
        {
            f1=Funtion();
            f2=Funtion();
            f3=Funtion();
            l=min(f1%n,f2%n)+1;
            r=max(f1%n,f2%n)+1;
            v=f3%mod;
            updata(l,r,1,n,1,v);
        }
        long long  ans=0;
        for(ll i=1;i<=n;i++)
        {
            ll tmp=query(i,i,1,n,1);
            ans^=(long long)tmp*i;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值