最大闭权子图模板题

题目:

OneDay有 n 张钞票,钞票按从 1 到 n 的顺序编号,编号 i的钞票面值为 ai ​(1≤i≤n)。很不幸,这些钞票中有不少面值为负,OneDay想要使拥有的面值之和最大,需要丢弃一部分钞票。但丢弃第 i 张钞票时,必须同时丢弃所有编号为 ii 的整数倍的钞票。OneDay可以丢弃任意张钞票,那么能获得的最大面值和是多少呢?

Input

第一行输入一个正整数 nn(1≤n≤500),表示钞票数量。

接下来一行输入 nn 个整数 a1,a2,⋯,an (|ai|≤10^5),表示每张钞票面值。

Output

输出一个整数表示最大的面值和。

Example

input

Copy

6
1 -5 3 -2 4 5

output

Copy

8

 

思路:考虑样例: 1 -5 3 -2 4 5

                              1  2  3  4 5  6

如果不选第1个,那么后面都不能选,如果不选第2个,那么第2,4,6个都不能选,换句话说,如果我想选第4个,那么第2个肯定要选。倘若我们从第4个到第2个连一条边的话,如果我们选了第4个,那么它指向的第2个也就必须要选。这样题目就回到了最大闭权子图的求法。

 

定义
有一个有向图,每一个点都有一个权值(可以为正或负或0),选择一个权值和最大的子图,使得每个点的后继都在子图里面,这个子图就叫最大权闭合子图。 
如下图: 
 æåå¾
能选的子图有Ø,{4},{3,4},{2,4},{1,2,3,4},它们的权值分别为0,-1,5,-6,4. 
所以最大权闭合子图为{3,4},权值为5.

解法
这个问题可以转化为最小割问题,用网络流解决。 
从源点s向每个正权点连一条容量为权值的边,每个负权点向汇点t连一条容量为权值的绝对值的边,有向图原来的边容量全部为无限大。 
 
求它的最小割,割掉后,与源点s连通的点构成最大权闭合子图,权值为(正权值之和-最小割)。

如何理解
割掉一条边的含义
由于原图的边都是无穷大,那么割边一定是与源点s或汇点t相连的。

割掉s与i的边,表示不选择i点作为子图的点; 
割掉i与t的边,表示选择i点为子图的点。

如果s与i有边,表示i存在子图中; 
如果i与t有边,表示i不存在于子图中。

合法性
只有s与t不连通时,才能得到闭合子图。

如果s与t连通,则存在点i,j,使得s到i有边,i到j连通,j到t有边,所以j一定是i的后继,但选择了i,没有选择j,不是闭合子图。

如果s与t不连通,选择了正权点i,一定选择了i后继中的所有负权点。设j是i的后继中的正权点,则割掉s到j的边是没有意义的,最小割不会割掉它,则j一点被选中,所以i的所有后继都被选中,符合闭合图的定义。

最优性
最小割=(不选的正权之和+要选的负权绝对值之和) 
最大权闭合子图=(正权之和-不选的正权之和-要选的负权绝对值之和)=正权值和-最小割 
因为正权值和,是定值,而最小割保证值最小,所以最大权闭合子图一定最优。
--------------------- 
作者:CaptainHarryChen 
来源:CSDN 
原文:https://blog.csdn.net/can919/article/details/77603353 
 

 

代码:

#include <bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;

struct Edge
{
    int from, to, cap, flow;
    Edge(int u, int v, int c, int f): from(u), to(v), cap(c), flow(f) {}
};

const int maxn = 505;
struct Dinic
{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    void init(int n)
    {
        this->n = n;
        for (int i = 0; i < n; i++) G[i].clear();
        edges.clear();
    }
    void AddEdge(int from, int to, int cap)
    {
        edges.emplace_back(from, to, cap, 0);
        edges.emplace_back(to, from, 0, 0);
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        memset(d, 0, sizeof(d));
        queue<int> q;
        q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!q.empty())
        {
            int x = q.front();
            q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
            {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int Maxflow(int s, int t)
    {
        this->s = s, this->t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
} ans;
int n;
int main(int argc, char const *argv[])
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        freopen("out.txt","w",stdout);
    #endif
    scanf("%d",&n);
    ans.init(n+10);
    int sum=0;
    for(int i=1;i<=n;i++)
    {
        int x;
        scanf("%d",&x);
        if(x>0) ans.AddEdge(0,i,x);
        if(x<0) ans.AddEdge(i,n+1,-x);
        if(x>0) sum+=x;
        for(int j=i+i;j<=n;j+=i)
        {
            ans.AddEdge(j,i,INF);
        }
    }
    int res=sum-ans.Maxflow(0,n+1);
    cout<<res<<endl;
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值