支持向量机是一种二分类模型,他的基本想法就是基于训练集和样本空间中找到一个最好的划分超平面,将两类样本分割开来,首先你就要知道什么样的划分发才能称为“最”好划分

看上图,二维平面上有两类样本,一类是用‘+’表示,另一类用‘-’表示,那么中间那几条划分线每条都能将两类样本分割开来,但我们我们一眼就注意到中间那条加粗的划分超平面,似乎他是最好的,因为两类的样本点都离他挺远的,专业点说就是该划分超平面对训练样本局部扰动的‘容忍’性最好。好,这还只是个二维平面,我们可以通过可视化大概寻找这样一个超平面,但如果三维,四维,五维呢,我们必须用我们擅长的数学去描述它,推导它。
在样本空间中,划分超平面可用
表示,记为(w,b),样本点(xi,yi)到划分超平面的函数间隔为
,几何间隔为:

若
,可知函数间隔和几何间隔相等,若超平面参数w,b成比例的改变(超平面没有变),则函数间隔也是成比例的改变,而几何间隔不变。
支持向量机的基本想法就是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,表达为数学公式即为:发

本文详细介绍了支持向量机(SVM)的原理,包括如何寻找最佳划分超平面、函数间隔与几何间隔的概念,以及在解决线性可分问题时的最优化问题。通过拉格朗日对偶性,引入核函数以处理线性不可分情况,并探讨了如何选择合适的核函数以及SVM参数C的影响。
最低0.47元/天 解锁文章
632

被折叠的 条评论
为什么被折叠?



