Deep&Cross Network 是继wide&deep模型推出的,对比主要是将wide层改成cross层,用于特征的充分自动交叉编码,而后和deep层特征拼接作为最后一层输入,其基本参数
- feature_size(类别特征数): M
- field_size(类别特征列): F
- dense size(连续特征个数): D
- embedding size(每个类别特征表示维度数): K
- batch size :B

如上图所知,其原始输入X0是由连续特征(Dense feature)和类别特征(Sparse feature)拼接而成。
因此同样需要先建立一个[M,K]的embedding矩阵,然后通过tf.lookup函数从emb matrix取出一批次的类别特征[B,F,K]
X0:[B,F*K+D] ==> [B,d] 注:为方便用d代替(F*K+D)
1. cross layer
可以着重研究一下为什么是这种交叉方式,他实现了怎样的交叉


DCN模型是wide&deep模型的升级版,它使用cross层替代wide层进行特征交叉编码。cross层通过多层交叉实现所有阶的特征组合,而deep层则负责特征的非线性变化。最后,两层的特征拼接并通过全连接层得到预测值。
最低0.47元/天 解锁文章
837

被折叠的 条评论
为什么被折叠?



