推荐系统之DCN模型

DCN模型是wide&deep模型的升级版,它使用cross层替代wide层进行特征交叉编码。cross层通过多层交叉实现所有阶的特征组合,而deep层则负责特征的非线性变化。最后,两层的特征拼接并通过全连接层得到预测值。
摘要由CSDN通过智能技术生成

Deep&Cross Network 是继wide&deep模型推出的,对比主要是将wide层改成cross层,用于特征的充分自动交叉编码,而后和deep层特征拼接作为最后一层输入,其基本参数

  • feature_size(类别特征数): M
  • field_size(类别特征列): F
  • dense size(连续特征个数): D
  • embedding size(每个类别特征表示维度数): K
  • batch size :B

如上图所知,其原始输入X0是由连续特征(Dense feature)和类别特征(Sparse feature)拼接而成。

因此同样需要先建立一个[M,K]的embedding矩阵,然后通过tf.lookup函数从emb matrix取出一批次的类别特征[B,F,K]

X0:[B,F*K+D] ==> [B,d]  注:为方便用d代替(F*K+D)

1. cross layer

    可以着重研究一下为什么是这种交叉方式,他实现了怎样的交叉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值