Mysql和Redis数据一致性

文章探讨了在高并发场景下,如何处理数据库(如MySQL)与缓存(如Redis)之间的一致性问题,列举了六种常见的更新策略,包括先更新MySQL再更新Redis、先更新Redis再更新MySQL等,并分析了各自的优缺点。针对实时性和最终一致性需求,提出了不同的最佳实践,推荐了“先写MySQL再删除Redis”作为实时一致性方案,以及通过监听Binlog异步更新Redis来实现最终一致性。

什么是数据库与缓存一致性

  • 数据一致性指的是:缓存的数据值 = 数据库中的值

为什么会出现数据一致性问题呢?

  • 在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。
  • 所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。
  • 读取缓存步骤一般没有什么问题,但是一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题。

解决数据一致性问题的常见方案

在这里插入图片描述

下面详细介绍

1. 先更新Mysql,再更新Redis

在这里插入图片描述

图解说明:

  • 这是一副时序图,描述请求的先后调用顺序;
  • 橘黄色的线是请求 A,黑色的线是请求 B;
  • 橘黄色的文字,是 MySQL 和 Redis 最终不一致的数据;
  • 数据是从 10 更新为 11,但是Redis中的数据还是10;
  • 后面所有的图,都是这个含义,不再赘述。

请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。

2. 先更新Redis,再更新Mysql

在这里插入图片描述

同“先写 MySQL,再写 Redis”,看图可秒懂。

3. 先删除Redis,再更新Mysql

在这里插入图片描述

请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。

4. 先删除Redis,再更新Mysql,再删Redis

在这里插入图片描述

对于“先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的“延迟双删”,不过最后一次删除Redis的时间需要评估业务逻辑执行的时间,即需要等请求B执行完毕再删除。

5. 先更新Mysql,再删Redis

在这里插入图片描述

对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(那什么情况下不能容忍呢,比如秒杀业务、库存服务等。)

6. 先更新 MySQL,通过 Binlog,异步更新 Redis

在这里插入图片描述

这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis,这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。

几种方案比较

  1. 先更新 Redis,再更新 MySQL

    • 万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
  2. 先更新 MySQL,再更新 Redis

    • 对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
    • 当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。
  3. 先删除 Redis,再更新 MySQL

    • 高并发场景由于更新mysql使用时间较长就会产生数据不一致。
  4. 先删除 Redis,再更新 MySQL,再删除 Redis

    • “延迟双删” 这种方式虽然可行,但是需要去评估业务逻辑的执行时间
  5. 先更新MySQL,再删除 Redis

    • 比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;
    • 这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。
  6. 先更新 MySQL,通过canal监听 Binlog,异步更新 Redis

    • 对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;

个人结论

  • 实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
  • 最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。
### Go语言中MySQLRedis数据一致性解决方案 在Go语言开发环境中,为了保证MySQLRedis之间的数据一致性,通常采用以下几种方法: #### 1. 版本号控制 通过引入版本号机制,在更新数据时验证版本的一致性。以下是基于Go语言实现的一个简单示例[^1]。 ```go type Data struct { ID int `json:"id"` Content string `json:"content"` Version int `json:"version"` } func UpdateData(db *sql.DB, rdb *redis.Client, newData Data) error { // 构造SQL语句,带有版本号校验 sql := "UPDATE data SET content = ?, version = version + 1 WHERE id = ? AND version = ?" result, err := db.Exec(sql, newData.Content, newData.ID, newData.Version) if err != nil { return fmt.Errorf("failed to execute SQL: %w", err) } rowsAffected, _ := result.RowsAffected() if rowsAffected == 0 { return errors.New("update failed due to version mismatch or non-existent record") } // 如果成功,则删除对应的Redis缓存键值 err = rdb.Del(context.Background(), fmt.Sprintf("data_key_%d", newData.ID)).Err() if err != nil { return fmt.Errorf("failed to delete cache from Redis: %w", err) } return nil } ``` 此方案的核心在于每次更新数据库记录前都需确认当前版本号是否匹配,从而减少因并发修改而导致的数据不一致风险。 --- #### 2. 双写模式 双写是指在业务逻辑层面上同时向MySQLRedis发送写入请求。虽然这种方式容易引发顺序问题以及部分失败的情况,但如果配合幂等设计或者最终一致性模型则仍然可行[^3]。 下面是一个简单的例子展示如何利用管道技术完成异步双写的流程管理: ```go import ( "context" "fmt" "github.com/go-redis/redis/v8" ) var ctx = context.TODO() func WriteToBothStores(mysqlConn *sql.DB, redisClient *redis.Client, key string, value interface{}) { ch := make(chan bool, 2) go func() { defer close(ch) _, err := mysqlConn.ExecContext(ctx, "INSERT INTO table_name (key_column, value_column) VALUES (?,?) ON DUPLICATE KEY UPDATE value_column=?", key, value, value) if err != nil { fmt.Println(err.Error()) } else { ch <- true } }() go func() { defer close(ch) err := redisClient.Set(ctx, key, value, time.Hour).Err() if err != nil { fmt.Println(err.Error()) } else { ch <- true } }() for i := 0; i < cap(ch); i++ { select { case success := <-ch: if !success { // Handle partial failure here. } default: } } } ``` 注意这里采用了两个goroutine分别执行针对不同存储系统的操作,并且设置了缓冲信道用于协调它们的状态反馈。 --- #### 3. 基于消息队列的解耦架构 对于更复杂的场景来说,推荐借助Kafka/RabbitMQ之类的中间件来传递事件通知,使得生产者只负责触发变更动作而不关心具体消费细节;消费者订阅主题之后再决定何时何处应用更改内容即可达成目标[^2]。 例如定义一个通用的消息格式如下所示: ```json { "eventType": "Update", "entityId": 42, "newState": {"fieldA":"valueX","fieldB":null}, "oldState": null } ``` 然后由专门的服务监听该类别的广播信号并据此调整关联的目标资源状态直至满足预期为止。 --- #### 总结 以上三种方式各有优劣之处,实际选型过程中应当综合考虑项目需求特点、团队技术水平等因素后再做定夺。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值