- 博客(94)
- 收藏
- 关注
原创 5分钟了解JVM运行时数据区域
JVM运行时数据区是Java程序运行的核心,主要包括堆内存(存放对象实例)、方法区(存储类元数据)、虚拟机栈(方法调用栈)、本地方法栈(调用本地代码)和程序计数器(线程执行导航)。这些区域分工明确:堆区共享对象、栈区线程隔离、方法区管理类信息。合理划分内存区域有助于高效管理、并发安全和灵活调优。常见问题包括堆溢出、栈溢出和元空间溢出,可通过-Xmx、-Xss等参数调整。深入理解JVM内存模型是Java性能优化的基础。
2025-06-05 00:15:00
830
原创 JVM 是什么?它在 Java 中到底扮演了什么角色?
JVM(Java虚拟机)是Java生态的核心引擎,它通过虚拟化技术实现"一次编写,到处运行"的特性。作为规范与实现的结合体,JVM不仅执行字节码,还负责类加载、内存管理、垃圾回收等关键功能。其架构包含类加载器、运行时数据区、执行引擎和本地方法接口四大模块,通过解释器与JIT编译器的协同工作优化性能。JVM的自动内存管理机制解放了开发者,但也带来潜在性能问题。理解JVM内部原理对性能调优、问题排查和Java深度掌握至关重要,可以说是Java开发者的必备内功。
2025-06-04 01:15:00
711
原创 如何定位多线程 Bug?常见并发问题排查思路总结
这篇推文系统梳理了排查并发问题的6个实战路径:1)明确并发Bug症状类型;2)增加包含线程ID和变量快照的精细化日志;3)使用jstack/VisualVM等工具定位问题;4)通过并发Bug注入法复现问题;5)代码审查高危并发区域;6)针对不同场景选用合适的JUC并发工具。文章还详细介绍了并发测试的核心策略,包括制造冲突环境、多轮循环测试、加入状态检查机制,以及使用JMH、JCStress等专业工具验证并发语义的正确性。
2025-06-03 01:00:00
1169
原创 ThreadLocal 是什么?能解决哪些线程安全问题?
ThreadLocal是Java多线程编程中的隔离机制,它为每个线程提供独立变量副本,实现线程间数据隔离。其核心原理是通过线程内部的ThreadLocalMap存储数据,使用弱引用防止内存泄漏。典型应用场景包括用户上下文管理、数据库连接和日志追踪。但需注意以下关键点:1)必须在使用后调用remove()清理,尤其在线程池环境中;2)无法替代共享资源的锁机制;3)InheritableThreadLocal允许子线程继承父线程数据,但同样存在泄漏风险。最佳实践包括使用静态实例、严格清理和封装管理工具。正确使用
2025-06-02 00:30:00
916
原创 线程中断机制详解:interrupt() 真能杀掉线程吗?
Java线程中断机制详解:Thread.interrupt()并非强制终止线程,而是设置中断标志的协作式通知机制。正确响应中断的方式包括轮询isInterrupted()状态或处理InterruptedException异常。中断后需保留标志位,避免吞掉异常。Java废弃Thread.stop()是因强制终止会导致数据不一致等问题。最佳实践是编写可中断循环逻辑,妥善处理阻塞操作的中断异常。关键要理解中断是线程间的通信机制,体现Java"温和型并发控制"的协作哲学。
2025-06-01 00:30:00
1013
原创 Fork/Join 框架详解:并行计算的利器
Fork/Join框架是JDK7引入的并行计算工具,采用"分而治之"思想将大任务递归拆分为小任务并行执行。其核心组件包括ForkJoinPool(基于工作窃取算法的线程池)和ForkJoinTask(支持异步/同步执行的任务抽象类)。该框架最适合计算密集型、可拆分的任务,通过WorkStealing算法实现负载均衡,但需注意避免任务过度拆分和阻塞操作。实际应用中需设置合理阈值、监控线程池状态,并可通过自定义线程工厂进行调优。相比传统线程池,Fork/Join在递归任务处理上更具优势,但不
2025-05-31 00:45:00
993
原创 JUC 工具类大全:CountDownLatch、Semaphore、CyclicBarrier 有何区别?
摘要:本文深入解析Java并发编程中CountDownLatch、Semaphore和CyclicBarrier三大同步工具。CountDownLatch用于主线程等待子任务完成,基于AQS实现一次性计数;Semaphore通过许可机制控制并发线程数,支持公平/非公平策略;CyclicBarrier实现多线程阶段性同步,支持循环使用和回调机制。文章从源码层面对比三者的实现原理,分析适用场景,并给出使用建议:CountDownLatch适合任务完成通知,Semaphore用于限流,CyclicBarrier适
2025-05-30 00:45:00
1471
原创 为什么要使用 CAS?Unsafe、AtomicInteger 原理全揭示
本文深入解析了CAS(Compare-And-Swap)原子操作原理及其在并发编程中的应用。CAS通过"读取-比较-交换"机制实现无锁线程安全,相比传统锁机制具有更高性能。文章剖析了AtomicInteger、Unsafe的底层实现,并对比了CAS与锁的优劣势。同时介绍了高级并发工具如LongAdder(通过分段累加提升性能)、AtomicReferenceFieldUpdater(精准字段更新)和Java9的VarHandle(安全替代Unsafe)。最后针对不同并发场景给出了工具选型
2025-05-29 00:15:00
529
原创 公平锁 vs 非公平锁:到底谁更快?
公平锁与非公平锁的核心区别在于获取锁的顺序机制。公平锁严格遵循FIFO原则,确保先请求的线程先获得资源;非公平锁允许插队,吞吐量更高但可能导致线程饥饿。Java中ReentrantLock默认采用非公平策略,synchronized也是非公平实现。选择建议:对顺序敏感的公平锁,性能优先的非公平锁。两者安全性与公平性无关,关键在于根据实际场景权衡吞吐与顺序的需求。
2025-05-28 01:00:00
530
原创 线程池状态详解:从 RUNNING 到 TERMINATED 的生命周期
摘要:Java线程池通过ThreadPoolExecutor维护5种核心状态(RUNNING/SHUTDOWN/STOP/TIDYING/TERMINATED),使用32位整型ctl字段编码状态和线程数。状态转换是单向不可逆的,推荐优雅关闭流程:先shutdown()拒绝新任务,再awaitTermination()等待执行,超时则shutdownNow()强制终止。关键实践包括重写terminated()钩子做资源清理、注册JVM关闭钩子、监控线程池指标、处理拒绝任务等。合理控制线程池生命周期可避免任务丢
2025-05-27 00:45:00
1265
原创 线程池原理全解析:ThreadPoolExecutor 核心参数说明
Java 的线程池是并发编程的核心工具,而 ThreadPoolExecutor 是其底层实现的关键类。你真的搞懂它的参数和背后运行机制了吗?本文带你一文拆解。
2025-05-26 00:30:00
1000
原创 Java 中的 Lock 接口与 ReentrantLock 使用详解
本文深入探讨了Java并发编程中的ReentrantLock,它是Lock接口的一个实现,提供了比synchronized更灵活和强大的线程同步机制。文章首先分析了synchronized的局限性,如无法中断等待线程、不支持超时锁等,并指出Lock接口如何弥补这些不足。接着,详细介绍了Lock接口的核心方法,如lock()、unlock()、tryLock()等,以及ReentrantLock的基本用法和实现原理,包括其基于AQS(AbstractQueuedSynchronizer)的内部机制和公平/非公
2025-05-25 00:45:00
1112
原创 什么是线程不安全?i++ 为什么在多线程下会出错?
线程不安全指的是多线程环境下,多个线程同时访问共享资源时,由于缺乏同步机制,导致程序运行结果不可预测。例如,i++操作在多线程中可能因指令重排和缓存一致性问题导致更新丢失。解决线程不安全的方法包括使用synchronized、AtomicInteger或LongAdder,其中AtomicInteger基于CAS机制实现无锁并发,适合中高并发场景,而LongAdder则适用于高并发计数器。volatile关键字只能保证可见性,无法保证原子性,因此不能解决i++的线程安全问题。此外,HashMap在多线程中可
2025-05-24 09:00:00
869
原创 Java 内存模型(JMM)通俗解释:volatile 背后的秘密
本文深入探讨了Java内存模型(JMM)及其在并发编程中的应用,特别是volatile关键字的作用。JMM定义了多线程环境下共享变量的访问规则,确保可见性和有序性。volatile通过禁止指令重排序和保证可见性,解决了多线程间的数据一致性问题。然而,volatile并不保证原子性,对于复合操作仍需使用synchronized或原子类。文章还对比了volatile与synchronized的特性,并列举了volatile的典型应用场景和局限性。理解JMM和volatile的机制,有助于编写更高效、更安全的并发
2025-05-23 03:15:00
1225
原创 启动线程用 start(),不是 run()!为什么?
在Java中,创建线程时直接调用run()方法是一个常见错误,因为run()只是一个普通方法调用,不会启动新线程,而是在当前线程中同步执行。要真正启动新线程,必须调用start()方法,它会触发JVM调用底层的start0()方法,从而创建新线程并异步执行run()方法。错误地使用run()会导致主线程阻塞,并发逻辑失效,任务串行执行,失去线程的意义。正确的线程启动方式是new Thread(task).start()。此外,推荐使用线程池(如ThreadPoolExecutor)来管理线程,避免频繁创建线
2025-05-22 02:00:00
725
原创 Java 多线程基础:Thread 和 Runnable 到底有何不同?
在Java多线程开发中,Thread和Runnable是两个核心概念,常被初学者混淆。Runnable是一个函数式接口,仅定义了一个run()方法,而Thread是一个类,实现了Runnable接口,并提供了线程的创建和管理功能。从使用方式上看,继承Thread类或实现Runnable接口都可以启动新线程,但推荐使用Runnable,因为它更灵活、可复用,符合组合优于继承的设计原则。Thread通过构造函数接收Runnable实例,并在启动时执行其run()方法,体现了职责分离的设计哲学。实际开发中,应首选
2025-05-21 00:30:00
1611
原创 Java 集合如何实现 Fail-Fast 与 Fail-Safe?迭代器机制详解
Java集合框架中的Fail-Fast和Fail-Safe机制是处理并发修改的两种不同策略。Fail-Fast机制在检测到并发修改时会立即抛出ConcurrentModificationException,以防止数据不一致,常见于ArrayList、HashSet等集合。Fail-Safe机制则通过创建集合的副本来避免并发修改导致的异常,适用于CopyOnWriteArrayList和ConcurrentHashMap等集合。Fail-Fast通过维护modCount字段来实现,而Fail-Safe则通过写
2025-05-20 04:00:00
900
原创 你真的理解 equals() 和 hashCode() 吗?Map 正确使用指南
在Java中,Map的实现(如HashMap、LinkedHashMap、ConcurrentHashMap)依赖于对象的equals()和hashCode()方法来确保键的唯一性。hashCode()用于确定键应存储在哪个桶中,而equals()用于确认桶中是否存在逻辑相同的键。为了确保Map的正确行为,必须同时重写这两个方法,并遵循一致性、等价性等契约规则。未正确实现这些方法可能导致HashMap查找失败、Set去重错误等问题。自定义对象作为键时,常见错误包括未重写equals()和hashCode()
2025-05-19 00:30:00
1244
原创 TreeMap、TreeSet 为何能自动排序?红黑树原理全解析
TreeMap和TreeSet之所以能够实现自动排序,是因为它们底层采用了红黑树(Red-Black Tree)这种自平衡的二叉搜索树。红黑树通过维护五个关键性质(如节点颜色、根节点为黑色、叶子节点为黑色等)来确保树的高度近似平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。TreeMap按Key排序,而TreeSet则基于TreeMap实现,插入元素时会自动维护顺序,并支持自定义排序器(Comparator)。红黑树在插入或删除节点时,会通过旋转和染色操作来保持树的平衡。TreeMap的插
2025-05-18 02:45:00
976
原创 HashMap 底层原理全解析:一文带你理解透彻!
本文深入剖析了HashMap的底层实现和核心操作,揭示了其看似简单的put和get操作背后的复杂性。HashMap的核心结构是数组加链表(或红黑树),通过哈希桶数组存储数据。文章详细解析了put和get操作的流程,包括哈希值的计算、桶位置的定位、链表的遍历和红黑树的转换等。此外,还介绍了哈希扰动函数、扩容机制、红黑树机制以及线程安全问题。文章还对比了JDK1.7和1.8的差异,并提供了HashMap的使用建议和自定义key的hashCode与equals方法的最佳实践。最后,通过多线程put操作的演示,揭示
2025-05-17 08:00:00
949
原创 ArrayList 和 LinkedList 有什么区别?一文讲清底层原理
本文深入探讨了Java中ArrayList和LinkedList的底层实现、性能差异及适用场景。ArrayList基于动态数组,适合频繁随机访问和尾部添加操作,但中间插入删除效率较低;LinkedList基于双向链表,适合频繁插入删除操作,尤其是头尾操作,但随机访问效率较低。文章还详细解析了两者的源码实现,包括初始化、扩容、添加、删除等操作,并对比了内存与GC行为差异。最后,提供了实战场景选型建议和误用警告,强调根据具体需求选择合适的集合类型,以提升代码性能和降低风险。
2025-05-16 00:30:00
1333
原创 一文了解 Java 集合框架:List、Set、Map 谁该选?
Java集合框架是开发中常用的工具,但容易误用。本文从底层实现、使用语义和性能差异三个维度全面解析了List、Set和Map。List如ArrayList和LinkedList适用于不同场景,Set如HashSet和TreeSet用于去重和排序,Map如HashMap和TreeMap用于键值对存储。文章还对比了不同集合的适用场景,指出了开发者常见的误区,并解析了ArrayList、HashSet和HashMap的核心源码。此外,提供了集合类线程安全改造方案,如使用Collections.synchroniz
2025-05-15 02:00:00
744
原创 MySQL 性能优化 7 大建议:配置、SQL、索引、缓存全覆盖
MySQL性能优化是一个系统工程,涉及配置、SQL编写、索引策略、表结构设计、缓存使用、慢查询分析及中间件协同等多个方面。首先,合理配置MySQL服务参数,如调整innodb_buffer_pool_size和innodb_log_file_size,优化连接管理,使用性能模式启动。其次,优化SQL编写,避免使用函数导致索引失效,精准选择字段,拆分大事务。第三,建立高效的索引策略,优先使用B+树索引,构造覆盖索引,遵循最左前缀匹配原则。第四,表结构设计要精细化,避免过宽表和过长字段,选择合适的主键策略
2025-05-14 01:00:00
1208
原创 一条 SQL 到底是怎么执行的?MySQL 查询流程全景讲解
MySQL的查询执行流程涉及多个关键模块:连接管理器负责连接建立与权限认证,解析器进行词法与语法分析,查询优化器决定SQL执行的最优路径,执行器负责具体操作调度,存储引擎(如InnoDB)处理数据读取与缓存。结果返回时,MySQL将结果集分批响应客户端。此外,预处理与重写机制优化查询,推荐使用EXPLAIN、SHOW PROFILE等工具进行性能排查。理解MySQL内部机制是性能优化的基础,掌握这些模块的职责与运行机制,有助于开发者与DBA进行高效的系统调优。
2025-05-13 07:00:00
898
原创 MYSQL主从复制机制详解:如何实现数据高可用?
在分布式系统中,高可用数据库是保障业务连续性的基石。而「主从复制」正是 MySQL 等关系型数据库实现高可用、读写分离与灾备容错的核心机制之一。本文将带你深入理解主从复制的原理、流程与类型,并结合实践分析其在真实系统中的应用与挑战。数据库单点部署存在诸多风险:主库宕机导致服务不可用读写压力集中造成性能瓶颈无法便捷扩展和灾备主从复制通过构建多节点结构,实现如下目标:✅ 读写分离,提升性能✅ 容灾备份,提高可用性✅ 实现数据多副本,提高安全性✅ 支持后续分库分表与集群扩展。
2025-05-12 07:15:00
875
原创 MySQL 死锁怎么排查?从 information_schema 到 SHOW ENGINE INNODB STATUS
你是否遇到过如下报错?这是 MySQL 提示你遇到了——两个或多个事务相互等待,彼此阻塞,最终系统只能。今天,我们不谈“死锁的定义”,而是聚焦:如何实战排查 MySQL 死锁?通过 information_schema 和 SHOW ENGINE INNODB STATUS 两种工具,抽丝剥茧,搞清每一次死锁的源头。为什么死锁难查?复现困难:并发问题往往不可预测。锁粒度复杂:行锁、间隙锁、临键锁混合使用。错误日志少:只抛出报错,不告知谁阻塞了谁。因此,需要借助,抓住第一手证据。这个命令会输出。
2025-05-11 09:30:00
1201
原创 MySQL 事务隔离级别详解:别再只会说 REPEATABLE READ
MySQL 默认使用 REPEATABLE READ,相比 Oracle 默认的 READ COMMITTED,更强调一致性,牺牲部分并发性能。大多数开发者面对事务时,往往脱口而出:“MySQL 默认是 REPEATABLE READ”,但却难以准确解释它和其他隔离级别的实际差异。今天我们就系统拆解 MySQL 四种隔离级别的原理、对比与适用场景,让你对事务掌控更进一步。REPEATABLE READ:事务开始时创建一次 Read View,后续复用。read view 决定事务可见的数据版本范围。
2025-05-10 07:45:00
1158
原创 MySQL 索引到底怎么用才高效?B+ 树、联合索引全解析
在数据库优化的世界里,“索引”二字听起来简单,实则藏着无数细节与坑。本文将带你系统性掌握 MySQL 中索引的底层结构、设计原则与高效使用技巧,助你写出更快、更稳的 SQL 查询。InnoDB 的页大小为 16KB,一个索引节点可挂数百条记录,三层 B+ 树结构可支撑百万级数据查询仍保持高效。如果 email 字段建了索引,查询将跳过全表扫描,直接“命中”目标行。若查询字段可被索引覆盖(即在索引列中全部包含),则不会发生回表,这就是。频繁更新的大字段,不建议建索引,会影响写性能。
2025-05-09 08:15:00
1128
原创 SQL 查询为什么慢?从执行计划 EXPLAIN 开始分析
在 MySQL 8.0 之前,EXPLAIN 只是静态预测执行路径,无法反映实际执行的耗时和行数。它会评估每种可选路径的代价,然后选择“最便宜”的执行方式。执行计划显示 orders 表先扫,再关联 users,但 users.age 无索引,导致大量回表操作。它就像 MySQL 提供的“透视眼”,能帮你直观地理解 SQL 执行背后的逻辑,精准找出瓶颈点。EXPLAIN 是 MySQL 提供的分析工具,它不会真正执行 SQL,而是。:虽然 email 上有索引,但函数包裹字段,导致索引失效,变成全表扫描。
2025-05-08 09:30:00
1555
原创 MySQL 的存储引擎到底怎么选?InnoDB vs MyISAM 深度对比
InnoDB 是 MySQL 默认引擎,提供完整的事务能力,确保数据一致性。Buffer Pool 可配置大小(如:innodb_buffer_pool_size=1G),建议占用 70%~80% 的物理内存;在 MySQL 中,存储引擎是“可插拔”的,用户可以为不同的表指定不同的引擎。InnoDB 会在写入前记录 redo log,即使 MySQL 崩溃,也能根据日志恢复数据,保障数据不丢失。相比 MyISAM 的表级锁,InnoDB 支持高并发下的细粒度控制,避免写操作之间互相阻塞。
2025-05-07 07:30:00
829
原创 Kafka 3.x 引入的原生 DLQ 支持,实战与局限
Kafka 引入了对「原生 DLQ(Dead Letter Queue,死信队列)」的支持。在 Kafka 的实际使用中,消息消费失败是常态,而如何优雅地“兜底”异常消息,一直是架构设计绕不开的难题。,且缺乏精细的控制能力。在生产中,仍建议结合 Spring Kafka 的 @RetryableTopic、自定义 DLQ 策略,构建更稳定可靠的消息消费体系。未来 Kafka 若能将 DLQ 支持拓展至原生 KafkaConsumer,结合可配置重试策略,将进一步完善端到端的异常处理闭环。
2025-05-06 05:30:00
921
原创 Kafka 实践中的那些坑:重试、死信队列、反压问题全收录
如果消费失败,Consumer 不提交 offset,Kafka 会不断尝试重新投递同一条消息,直到消费成功或服务挂掉。Kafka 本身不支持延迟消息,可借助定时任务、调度服务(如 Quartz)、或使用中间件如Kafka Delay Queue 实现。在生产环境中使用 Kafka 时,绝不仅仅是 “生产消息 → 消费消息” 这么简单。这是一个非常实用的问题,尤其是在微服务系统中处理消息失败与自动重试时,的组合可以大幅提升健壮性与灵活性。,无需手动创建多个重试 topic,也不必手动编排转发逻辑。
2025-05-05 08:00:00
1133
原创 Kafka 与 RabbitMQ、RocketMQ 有何不同?
Kafka 像日志系统,RabbitMQ 像消息代理,RocketMQ 像交易管家 —— 各自擅长领域不同,不能简单替代,只有合适不合适,没有好与不好。RocketMQ 的设计天生支持事务、顺序与高可用,但学习曲线更陡。⭐⭐⭐⭐(需熟悉分区、副本、ISR、Controller)RabbitMQ “路由灵活”,但并不天然支持顺序语义。支持 Java/C++/Python,但 Java 最佳。阿里电商“双11”场景演进而来,强调事务、安全和可控性。高,Spring Kafka / Flink 支持丰富。
2025-05-04 10:00:00
2914
原创 Kafka 中的幂等性与事务机制,能解决消息重复吗
Kafka 的幂等性(Idempotence)和事务(Transactions)机制,正是为了解决这个问题而生。但在电商下单、金融转账等严肃场景中,**“消息重复”或“丢失”**往往是系统灾难的根源。Kafka 本身是**“至少一次”(at-least-once)语义**:消息可以被重复消费,但不会丢。📌 所以,Kafka 可以帮你做到“不重不丢”的前提已经具备,但你仍需参与“最后一公里”的可靠性设计。启用幂等性后,每条消息都需携带 PID 和序号,会增加元数据同步开销,
2025-05-03 07:30:00
1121
原创 Kafka 性能调优指南:Producer与Broker篇
Kafka Producer 是写入性能的起点,优化 Producer 直接影响系统的吞吐与延迟表现。Apache Kafka 作为高吞吐、高可用的消息系统,在大规模生产环境中广泛应用。Kafka Broker 是整个系统的数据中转站,调优 Broker 对整体性能影响深远。默认值较小(16384 字节),在高吞吐场景中可以调大(如 64KB 或更高)往往是保障其稳定运行的核心环节。,建议在实际部署中结合压测与监控,逐步调试参数,达到最优值。,详解调优策略与原理,帮助你在高并发场景中稳定“飙车”。
2025-05-02 01:00:00
1272
原创 Kafka 消费者组机制详解:负载均衡与消费状态管理
在 Kafka 中,消费者组(Consumer Group)是实现高吞吐、横向扩展以及消息可靠消费的核心机制。Kafka 的消费者组不仅实现了消费端的负载均衡,还通过 Offset 管理保证了消息处理的可控性与可靠性。:同一个 Topic 中,每个 Partition 只会被组内某一个消费者独占消费,多个消费者自动分配 Partition,提升并发处理能力。如果消费者宕机或网络异常,Group Coordinator 会感知到心跳(Heartbeat)超时,立刻触发新的再平衡,确保消费过程不中断。
2025-05-01 00:45:00
1334
原创 实战:用 Spring Boot 快速构建一个 Kafka 消息系统
初步搭建好系统之后,如果你想真正用 Kafka 支撑起生产级别的业务,还需要掌握更深入的能力。Spring Kafka 也支持 Avro 集成,只需添加依赖,并在配置中指定使用 Avro 序列化器、反序列化器。而 Kafka,以其高吞吐、可扩展、可靠的特性,成为了很多项目的不二之选。Kafka 会根据 key 的 hash 值选择分区,同样 key 的消息一定落到同一个分区,从而保证顺序。这种方式能精准控制 offset 的提交时机,比如确保消息真正处理成功之后再提交,极大提升了系统的可靠性。
2025-04-30 08:00:00
1419
原创 Kafka 消息是如何存储的?深入 Kafka 的底层文件结构
为了避免每次查找消息都全盘扫描 .log 文件,Kafka 使用 .index 文件加速 offset 查询。它的文件结构又有什么讲究?这种设计让 Kafka 既能按 offset 高速检索,也能高效按时间范围扫描,非常灵活。由于是追加写,因此 Kafka 写入磁盘时几乎不需要磁盘寻址,顺序吞吐率非常高。它不是靠复杂花哨的结构取胜,而是靠对磁盘物理特性的极致利用 —— 简单而高效。每个 Segment 由一组三个文件组成,共同协作,加速消息定位与检索。文件是按需滚动生成的,符合配置的最大大小或时间后切换。
2025-04-29 03:45:00
739
原创 Kafka 是如何保证消息顺序与高可用的?
在众多中间件中,Kafka 凭借其高吞吐、高可用、低延迟等特性,赢得了大量开发者和企业的青睐。如果一个 Consumer 挂了,Kafka 会触发 Rebalance,Partition 会重新分配,可能导致短时间重复消费或延迟。因此,只要 Producer 保证消息写入顺序,Consumer 严格按照 offset 拉取,因此,如果你将所有消息写入同一个 Partition,并使用单线程生产与消费,就能实现强顺序。Kafka 本质是为高吞吐设计的,中等强度的顺序保证是它的优势,而不是全局顺序。
2025-04-28 06:45:00
1230
原创 Kafka 架构详解:Broker、Topic、Partition 有什么讲究?
每个 Topic 可以划分为多个 Partition,不同 Partition 的消息是并行处理的,Producer 和 Consumer 都可以多线程操作不同 Partition。当你明白 Broker 是服务的承载者、Topic 是消息的分类器、Partition 是吞吐的分发器,你就不再会被那些名词绕晕,而是可以自信地做出架构决策。,通过 Topic 来分类管理消息,借助 Partition 实现并发和可扩展性,配合 Producer 和 Consumer 构建起完整的数据流转体系。
2025-04-27 11:00:00
1415
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人