问题描述
我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
输入格式
一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
输出格式
一行3位数字,表示:a除以b,小数后第n位开始的3位数字。
样例输入
1 8 1
样例输出
125
样例输入
1 8 3
样例输出
500
样例输入
282866 999000 6
样例输出
914
思路分析:根据除法竖式,余数作为下一次被除数,因此可以用循环解决问题
代码1:被除数每次只补1个0,运行会超时
#include <iostream>
#include <stdio.h>
int main( )
{
long long a,b,n;
int i;
scanf("%lld%lld%lld",&a,&b,&n);
a=a%b;//先取余,因为只要小数部分
for(i=1;i<n;i++)
{
a*=10;//被除数补0
a=a%b;//根据除法,一直除至n位,下一个被除数为a%b
}
for(i=0;i<3;i++)
{
a*=10;//被除数补0
printf("%lld",a/b);//小数后第n位开始的3位数字
a=a%b;//下一个被除数为a%b
}
return 0;
}
代码2:在代码1的基础上进行优化
#include <iostream>
#include <stdio.h>
int solve();
int main( )
{
// while(1)
solve();
return 0;
}
int solve()
{
long long a,b,n;
int i;
scanf("%lld%lld%lld",&a,&b,&n);
a=a%b;//先取余,因为只要小数部分
for(i=1;i<n-5;i=i+5)//因为会超时,优化之后一次补5个0
{
a*=100000;//被除数补0
a=a%b;//根据除法,一直除至接近n位,不能超过n位,下一个被除数为a%b
}
for(;i<n+3;i++)//接近 n位时,必须每次只补一个0
{
a*=10;//被除数补0
if(i>=n)//小数后第n位开始的3位数字
printf("%lld",a/b);
a=a%b;//下一个被除数为a%b
}
printf("\n");
return 0;
}