卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。
输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
输入样例:
6
3 5 6 7 8 11
输出样例:
7 6
思路分析:直接把输入的数进行猜想并存储,利用arr数组标记猜想过程出现过的数,从大到小输出即需要排序,通过比较未出现过的数及是关键数
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int N=1024;
int main( )
{
int arr[N]={0},num[100];
int k,i,n;
scanf("%d",&k);
for(i=0;i<k;i++)
{
scanf("%d",&n);//输入
num[i]=n;//存储
while(n!=1)//猜想过程
{
if(n%2==0)//偶数
{
n=n/2;
if(arr[n])//为真,之前已经猜想了,没有必有重复计算
break;
else arr[n]=1;//标记此时被猜想
}
else//奇数
{
n=(n*3+1)/2;
if(arr[n])//为真,之前已经猜想了,没有必有重复计算
break;
else arr[n]=1;//标记此时被猜想
}
}
}
sort(num,num+k);//排序
int f=0;
for(i=k-1;i>=0;i--)
{
if(!arr[num[i]])//arr中为出现过的即是关键数
{
if(!f)//控制格式
{
f=1;
printf("%d",num[i]);
}
else
printf(" %d",num[i]);
}
}
return 0;
}