传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5974
A Simple Math Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 5635 Accepted Submission(s): 1755
Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions:
X+Y=a
Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation).
Sample Input
6 8 798 10780
Sample Output
No Solution 308 490
Source
2016ACM/ICPC亚洲区大连站-重现赛(感谢大连海事大学)
题意就是给定正整数a,b。求x,y使得x+y=a && LCM(x,y)=b;测试组数最多为120000;
无脑做法就是暴力枚举a,然后找出i使得LCM(i,a-i)==b。
显然一组是没问题的,120000组就GG了。
所以就想啊,题目给出了两个方程,两个未知数,是不是可以解方程呢?答案是肯定的。
但是第一个问题来了,怎么联系x,y与LCM(x,y)呢,我们知道 LCM(x,y) = 那么不妨设GCD(x,y)=k; 则原方程化为:
ck+dk=a; cdk=b; (由于k为最大公约数,所以GCD(c,d)=1)
联立消去c 得k* - a*d +b = 0 所以问题转化为该方程是否有解(:
那么第二个问题来了,k是GCD(x,y)也是未知的呀!
其实这里可以做一个转化:GCD(x,y)=GCD(a,b);证明如下:
GCD(a,b)=GCD(cdk,(c+d)*k) 所以只要证明GCD(cd,c+d)==1,下面用反证法证明:
加入cd与c+d不互质,即存在一个公共因子t,由于c,d互质,所以c或者d且只能是其中一个有因子t,又因为c+d有因子t,则c,d同时拥有因子t,相矛盾,故假设不成立,即cd与c+d互质!
所以上述问题得证;
所以先算一下GCD(a,b)然后带入方程计算一下就行了!
AC代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<stack>
using namespace std;
#define pii pair<int, int>
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define per(i,a,b) for(int i=a;i<=b;i++)
#define rep(i,a,b) for(int i=a;i>=b;i--)
#define all(x) x.begin(),x.end()
#define PI acos(-1.0)
#define inf 0x3f3f3f3f
typedef long long ll;
template <class T> inline void read(T &x) {
x = 0;int f = 1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
x=x*f;
}
template<typename E>
E gcd(E a,E b){return b==0?a:gcd(b,a%b);}
template<typename E>
E ex_gcd(E a,E b,E &x,E&y) {if(b==0){x=1;y=0;}else {ex_gcd(b,a%b,y,x);y-=(a/b)*x;}}
template<typename E>
E quick_pow(E a,E b,E c){E ans=1;while(b){if(b&1) ans=ans*a%c;a=a*a%c;b>>=1;}return ans;}
template<typename E>
E inv1(E a,E b){return quick_pow(a,b-2,b);}
template<typename E>
E inv2(E a,E b){E x,y;ex_gcd(a,b,x,y);return (x%b+b)%b;}
template<typename E>
E oula(E n){
E res=n;
for(E i=2;i*i<=n;i++){
if(n%i==0){
while(n%i==0) n/=i;
res-=res/i;
}
}
if(n>1) res-=res/n;
return res;
}
const double eps=1.0e-5;
const int maxn=200000+10;
const ll mod=10007;
ll t,a,b;
int main()
{
while(~scanf("%lld%lld",&a,&b)){
ll k=gcd(a,b),tmp1=a*a-4*k*b,tmp2=sqrt(tmp1);
if(tmp1>=0&&tmp2*tmp2==tmp1){
ll d=(a+tmp2)/(2*k);
if(((a+tmp2)%(2*k)==0)&&(b%(k*d)==0)){
ll ans1=b/d,ans2=a-ans1;
if(ans1>ans2) swap(ans1,ans2);
printf("%lld %lld\n",ans1,ans2);
continue;
}else{
d=(a-tmp2)/(2*k);
if((a-tmp2)%(2*k)==0&&(b%(k*d)==0)){
ll ans1=b/d,ans2=a-ans1;
if(ans1>ans2) swap(ans1,ans2);
printf("%lld %lld\n",ans1,ans2);
continue;
}
}
}
puts("No Solution");
}
}
传送门:http://codeforces.com/problemset/problem/1076/C
C. Meme Problem
time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output
Try guessing the statement from this picture:
You are given a non-negative integer dd . You have to find two non-negative real numbers aa and bb such that a+b=da+b=d and a⋅b=da⋅b=d .
Input
The first line contains tt (1≤t≤1031≤t≤103 ) — the number of test cases.
Each test case contains one integer dd (0≤d≤103)(0≤d≤103) .
Output
For each test print one line.
If there is an answer for the ii -th test, print "Y", and then the numbers aa and bb .
If there is no answer for the ii -th test, print "N".
Your answer will be considered correct if |(a+b)−a⋅b|≤10−6|(a+b)−a⋅b|≤10−6 and |(a+b)−d|≤10−6|(a+b)−d|≤10−6 .
Example
Input
7
69
0
1
4
5
999
1000
Output
Y 67.985071301 1.014928699
Y 0.000000000 0.000000000
N
Y 2.000000000 2.000000000
Y 3.618033989 1.381966011
Y 997.998996990 1.001003010
Y 998.998997995 1.001002005
这题就很简单了,直接联立解方程,注意精度问题就好了(:
AC code:
#include<bits/stdc++.h>
using namespace std;
#define pii pair<int, int>
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define per(i,a,b) for(int i=a;i<=b;i++)
#define rep(i,a,b) for(int i=a;i>=b;i--)
#define all(x) x.begin(),x.end()
#define PI acos(-1.0)
#define inf 0x3f3f3f3f
typedef long long ll;
template <class T> inline void read(T &x) {
x = 0;int f = 1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
x=x*f;
}
template<typename E>
E gcd(E a,E b){return b==0?a:gcd(b,a%b);}
template<typename E>
E ex_gcd(E a,E b,E &x,E&y) {if(b==0){x=1;y=0;}else {ex_gcd(b,a%b,y,x);y-=(a/b)*x;}}
template<typename E>
E quick_pow(E a,E b,E c){E ans=1;while(b){if(b&1) ans=ans*a%c;a=a*a%c;b>>=1;}return ans;}
template<typename E>
E inv1(E a,E b){return quick_pow(a,b-2,b);}
template<typename E>
E inv2(E a,E b){E x,y;ex_gcd(a,b,x,y);return (x%b+b)%b;}
const double eps=1.0e-5;
const int maxn=200000+10;
const ll mod=10007;
long double a,b,c,d,e;
void solve()
{
b=d*d-4*d;c=sqrt(b);
if(b>=0){
e=(d+c)/2;
if(e>=0){
printf("Y %.9Lf %.9Lf\n",e,d-e);
return;
}
e=(d-c)/2;
if(e>=0){
printf("Y %.9Lf %.9Lf\n",e,d-e);
return;
}
}
puts("N");
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%Lf",&d);
solve();
}
}