链接:https://ac.nowcoder.com/acm/contest/543/C
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
有一只可爱的兔子被困在了密室了,密室里有两个数字,还有一行字:
只有解开密码,才能够出去。
可爱的兔子摸索了好久,发现密室里的两个数字是表示的是一个区间[L,R]
而密码是这个区间中任意选择两个(可以相同的)整数后异或的最大值。
比如给了区间[2,5] 那么就有2 3 4 5这些数,其中 2 xor 5=7最大 所以密码就是7。
兔子立马解开了密室的门,发现门外还是一个门,而且数字越来越大,兔子没有办法了,所以来求助你。
提示:异或指在二进制下一位位比较,相同则 0 不同则 1
例如2=(010)22=(010)2 5=(101)25=(101)2
所以2 xor 5=(111)2=75=(111)2=7
输入描述:
第一行一个数 T,表示数据组数。 接下来 T 行,每行两个数 L,R, 表示区间[L,R]。
输出描述:
输出共T行每行一个整数,表示[L,R]的密码。
示例1
输入
复制
5 1 10 2 3 3 4 5 5 2 5
输出
复制
15 1 7 0 7
备注:
对于30%的数据 1 ≤ T ≤ 10 0 ≤ L ≤ R ≤ 100 对于另外10%的数据 L=R 对于70%的数据 1 ≤ T ≤ 10 0 ≤ L ≤ R ≤ 50000 对于100%的数据 1 ≤ T ≤ 10000 0 ≤ L ≤ R ≤ 1018 (对于100%的数据) 输入数据较大,请使用快速读入。
解法:从高位到低位枚举每一位,判断当前位的状态:即必须取(代码中must函数),必须不能取(代码中mustnt函数),以及可取可不取,以下是讨论
1)若当前位不取,由剩下的所有位构成的最大数加上当前取到的数a小于区间左端点L,则必须取;
2)若当前位取,当前取到的数a加上当前位的数大于区间右端点R,则一定不能取;
3) 除去1)2)中的情况即为可取可不取;
记录两个数a,b为当前两个数,然后分别判断两个数对应的以上3种情况的哪一种,讨论如下:
1)若两个数都是第一种情况,都加上1<<i 即可;
2)若只有一个是第一种情况,则把这个加上1<<i ,而不需要管另外一个的情况,因为另外一个不论是第二种还是第三种,贪心的都可以不取,这样异或才能最大;
3)若两个数都不是第一种情况,则若两个中只要有一个可取当前位,则给其中能取当前位的任意一个加上1<<i,这样方能最大
附代码:
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
ll l,r,a,b;
int t;
bool must(ll k,int i)
{
return ((1ll<<i)-1)<l-k;
}
bool mustnt(ll k,int i)
{
return (1ll<<i)>r-k;
}
int main()
{
scanf("%d",&t);
while(t--){
a=b=0;
scanf("%lld %lld",&l,&r);
for(int i=62;i>=0;i--){
if(must(a,i)&&must(b,i)){
a+=(1ll<<i);
b+=(1ll<<i);
}
else if(must(a,i)&&!must(b,i)){
a+=(1ll<<i);
}
else if(!must(a,i)&&must(b,i)){
b+=(1ll<<i);
}
else{
if(!mustnt(a,i)||!mustnt(b,i)){
if(!mustnt(a,i)) a+=(1ll<<i);
else b+=(1ll<<i);
}
}
}
printf("%lld\n",a^b);
}
}