转录组学
文章平均质量分 92
转录组
生信小菜鸟啊
时而闷骚,时而阳光的帅哥一枚,坚持总结,坚持分享。让分享成为一种态度!
展开
-
GEO数据挖掘(学习笔记)
GEO数据挖掘1. GEO数据库简介2. 数据下载1. GEO数据库简介NCBI Gene Expression Omnibus(GEO)是一个存储各种高通量实验数据的公共数据库。这些数据包括基于单通道和双通道微阵列的实验,检测mRNA,基因组DNA和蛋白质丰度,以及非阵列技术,如基因表达系列分析(SAGE),质谱蛋白质组学数据和高通量测序数据。网址如下:https://www.ncbi.nlm.nih.gov/geo/2. 数据下载在这里插入代码片...原创 2020-08-26 18:16:25 · 19314 阅读 · 20 评论 -
RNA-seq数据分析(HISAT2+featureCounts+StringTie)
RNA-seq数据分析简介简介基因表达是功能基因组学研究的一个重要领域。基因表达与基因信息从基因组DNA模板到功能蛋白产物的流动有关(图1)。大规模并行RNA测序(RNA-seq)已成为一种标准的基因表达检测方法,尤其用于询问相对转录本丰度和多样性。一些研究已经证实,它的测量精度可以与其他成熟的方法如微阵列和定量聚合酶链反应(qPCR)相媲美[2-4]。它有蜜蜂...原创 2020-08-21 21:53:58 · 16444 阅读 · 5 评论 -
转录组差异表达分析和火山图可视化
利用R包DEseq2进行差异表达分析和可视化count数矩阵在Linux下,通过HISAT2 对下载的GSE数据进行比对,FeatureCounts软件进行基因水平定量,得到count数矩阵。之后便可以载入R语言中进行差异分析。差异分析第一次分析RNA-seq数据,走到这一步相对容易了许多。转录组数据分析主要参考了生信技能树Jimmy老师的相关课程及推文。RNA-seq的read count普遍认为符合泊松分布,但是之前分析过的芯片数据符合正态分布,所以筛选DEGs的方法有一定差别。.原创 2020-07-30 13:44:33 · 12094 阅读 · 0 评论