用scikit-learn和pandas学习线性回归

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。

原地址: http://www.cnblogs.com/pinard/p/6016029.html

Sklearn机器学习基础实例之—回归预测问题:http://www.pianshen.com/article/4964117195/

  1. 获取数据,定义问题
        没有数据,当然没法研究机器学习啦。? 这里我们用UCI大学公开的机器学习数据来跑线性回归。

数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

数据的下载地址在这: http://archive.ics.uci.edu/ml/machine-learning-databases/00294/

里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。

我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:

PE=θ0+θ1∗AT+θ2∗V+θ3∗AP+θ4∗RH
    而需要学习的,就是θ0,θ1,θ2,θ3,θ4这5个参数。

  1. 整理数据
        下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。

打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。

好了,有了这个csv格式的数据,我们就可以大干一场了。

  1. 用pandas来读取数据
        我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。

先把要导入的库声明了:

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
    接着我们就可以用pandas读取数据了:

read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里

data = pd.read_csv(’.\CCPP\ccpp.csv’)
    测试下读取数据是否成功:

#读取前五行数据,如果是最后五行,用data.tail()
data.head()
    运行结果应该如下,看到下面的数据,说明pandas读取数据成功:

AT	V	AP	RH	PE

0 8.34 40.77 1010.84 90.01 480.48
1 23.64 58.49 1011.40 74.20 445.75
2 29.74 56.90 1007.15 41.91 438.76
3 19.07 49.69 1007.22 76.79 453.09
4 11.80 40.66 1017.13 97.20 464.43

  1. 准备运行算法的数据
        我们看看数据的维度:

data.shape
    结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。

现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。

X = data[[‘AT’, ‘V’, ‘AP’, ‘RH’]]
X.head()
    可以看到X的前五条输出如下:

AT	V	AP	RH

0 8.34 40.77 1010.84 90.01
1 23.64 58.49 1011.40 74.20
2 29.74 56.90 1007.15 41.91
3 19.07 49.69 1007.22 76.79
4 11.80 40.66 1017.13 97.20

接着我们准备样本输出y, 我们用PE作为样本输出。

y = data[[‘PE’]]
y.head()
    可以看到y的前五条输出如下:

PE

0 480.48
1 445.75
2 438.76
3 453.09
4 464.43
5. 划分训练集和测试集
    我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
    查看下训练集和测试集的维度:

print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape
    结果如下:

(7176, 4)
(7176, 1)
(2392, 4)
(2392, 1)

可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。
  
6. 运行scikit-learn的线性模型
    终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)
    拟合完毕后,我们看看我们的需要的模型系数结果:

print linreg.intercept_
print linreg.coef_
    输出如下:

[ 447.06297099]
[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]
    这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:

PE=447.06297099−1.97376045∗AT−0.23229086∗V+0.0693515∗AP−0.15806957∗RH

  1. 模型评价
        我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。

我们看看我们的模型的MSE和RMSE,代码如下:

复制代码
#模型拟合测试集
y_pred = linreg.predict(X_test)
from sklearn import metrics

用scikit-learn计算MSE

print “MSE:”,metrics.mean_squared_error(y_test, y_pred)

用scikit-learn计算RMSE

print “RMSE:”,np.sqrt(metrics.mean_squared_error(y_test, y_pred))
复制代码
    输出如下:

MSE: 20.0804012021
RMSE: 4.48111606657
    得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。

比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:

复制代码
X = data[[‘AT’, ‘V’, ‘AP’]]
y = data[[‘PE’]]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)
#模型拟合测试集
y_pred = linreg.predict(X_test)
from sklearn import metrics

用scikit-learn计算MSE

print “MSE:”,metrics.mean_squared_error(y_test, y_pred)

用scikit-learn计算RMSE

print “RMSE:”,np.sqrt(metrics.mean_squared_error(y_test, y_pred))
复制代码
     输出如下:

MSE: 23.2089074701
RMSE: 4.81756239919
    可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。
8. 交叉验证
    我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:
复制代码
X = data[[‘AT’, ‘V’, ‘AP’, ‘RH’]]
y = data[[‘PE’]]
from sklearn.model_selection import cross_val_predict
predicted = cross_val_predict(linreg, X, y, cv=10)

用scikit-learn计算MSE

print “MSE:”,metrics.mean_squared_error(y, predicted)

用scikit-learn计算RMSE

print “RMSE:”,np.sqrt(metrics.mean_squared_error(y, predicted))
复制代码
    输出如下:

MSE: 20.7955974619
RMSE: 4.56021901469
    可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。

  1. 画图观察结果
        这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:

复制代码
fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], ‘k–’, lw=4)
ax.set_xlabel(‘Measured’)
ax.set_ylabel(‘Predicted’)
plt.show()
复制代码
    输出的图像如下:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Scikit-learn是一个用于机器学习的Python库,它提供了一系列用于回归分析的算法和工具。其中包括了非线性回归模型的实现。非线性回归是指因变量和自变量之间的关系不是简单的线性关系。 Scikit-learn中的非线性回归模型通过引入非线性的特征变换或者使用非线性的核函数来适应非线性数据关系。我们可以使用花费最小二乘法(如岭回归、Lasso回归、弹性网络等)或者支持向量回归(SVR)进行非线性回归建模。 非线性回归模型的使用步骤大致如下: 1. 载入数据:将数据导入Python环境,可以使用pandas库加载CSV文件或者直接导入NumPy数组格式的数据。 2. 特征转换:根据实际情况对特征进行非线性转换,例如多项式特征转换(PolynomialFeatures)或者其他的基函数转换。 3. 划分数据集:将数据集划分为训练集和测试集,训练集用于模型参数的学习,测试集用于模型的评估。 4. 模型训练:使用Scikit-learn中的非线性回归模型进行训练,例如岭回归、Lasso回归、弹性网络或者支持向量回归(SVR)等。 5. 模型评估:根据测试集上的表现指标,如均方误差(Mean Squared Error)、R平方值(R-squared)等评估模型的性能。 6. 模型预测:使用训练好的模型对新样本进行预测,得到预测结果。 Scikit-learn线性回归模型的优点是具有灵活性和可解释性。同时,Scikit-learn库还提供了交叉验证、特征选择、模型选择等功能,可以帮助我们更好地进行非线性回归问题的建模和评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值