【信奥赛一本通】1335:【例2-4】连通块(详细代码)

【图论算法】1335:【例2-4】连通块

1.【题目描述】

【题目描述】
一个n × m的方格图,一些格子被涂成了黑色,在方格图中被标为1,白色格子标为0。问有多少个四连通的黑色格子连通块。四连通的黑色格子连通块指的是一片由黑色格子组成的区域,其中的每个黑色格子能通过四连通的走法(上下左右),只走黑色格子,到达该联通块中的其它黑色格子。

【输入】
第一行两个整数n,m(1≤n,m≤100),表示一个n × m的方格图。

接下来n行,每行m个整数,分别为0或1,表示这个格子是黑色还是白色。

【输出】
一行一个整数ans,表示图中有ans个黑色格子连通块。

【输入样例】
3 3
1 1 1
0 1 0
1 0 1
【输出样例】
3

2.【代码】

#include<bits/stdc++.h>
#include<queue>
using namespace std;
struct st{
	int x;
	int y;
};
queue<st> q;
int a[100][100],n,m;
int e[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
int sum;
void bfs(int x,int y)
{
	st b1;
	b1.x=x;
	b1.y=y;
	a[x][y]=0;
	q.push(b1);
	while(!q.empty())
	{
		st b2;
		b2=q.front();
		q.pop();
		for(int i=0;i<4;i++)
		{
			int h=b2.x+e[i][0];
			int l=b2.y+e[i][1];
			if(h>=1&&h<=n&&l>=1&&l<=m&&a[h][l]==1)
			{
				st d3;
				a[h][l]=0;
				d3.x=h;
				d3.y=l;
				q.push(d3);
			}
		}
	}
	sum++;
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int k=1;k<=m;k++)
		{
			cin>>a[i][k];
		}
	}
	for(int i=1;i<=n;i++)
	{
		for(int k=1;k<=m;k++)
		{
			if(a[i][k]==1)
			{
				bfs(i,k);
			}
		}
	}
	cout<<sum;
    return 0;
}

仅供参考!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值