单链表的环的入口节点

步骤一:判断是否有环。

快慢指针:一个走一步,一个走两步。最终能相遇就有环。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool hasCycle(ListNode *head) {
        if(head==NULL) return false;
        ListNode * fast=head;
        ListNode * slow=head;
        while(fast->next!=NULL)
        {
            fast = fast->next;
            if(fast->next==NULL) return false;
            fast = fast->next;
            slow=slow->next;
            if(fast == slow) return true;
        }
        return false;
    }
};

步骤二:查找环的入口节点。

方法1:

先计算环的大小,从之前的相遇点一个指针走两步,一个指针走一步。再次相遇时慢指针的路程n就是环的节点个数。

然后两个指针从链表头出发,一个先走n步,另一个在表头。速度一样,都是走一步,当两者相遇时的节点就是环入口。

分析:令链表总长度为r,则先走n步的指针到达链表尾(即第二次到达入口节点)时走了(n-r)步;而链表头到环入口节点的距离为(n-r)。故两者在入口相遇。

方法2:

在步骤一中,设相遇点距环入口距离为b,链表头到环入口距离为a,环的长度为n。快指针走了a+b+kn(k为循环次数),慢指针走了(a+b)路程。因为快指针是慢指针的两倍速度,则路程也是两倍,即a+b+kn=2*(a+b)。可得a=kn-b=(k-1)n+(n-b)。

方法:一个指针从链表头开始走,另一个指针从相遇点开始走。相遇点就是环的入口节点。

快慢指针法:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *mid=judge(head);
        if(mid==NULL) return NULL;
        ListNode *start=head;
        while(mid !=start ){
            mid=mid->next;
            start=start->next;
        }
        return mid;
    }
    ListNode *judge(ListNode * head){
        if(head==NULL) return NULL;
        ListNode * fast=head;
        ListNode * slow=head;
        while(fast->next != NULL){
            fast = fast->next;
            slow = slow->next;
            if(fast->next==NULL) return NULL;
            fast = fast->next;
            if(fast == slow) return fast;
        }
        return NULL;
    }
};

注意:直接指针判相等即可,如果通过数值会报错时间超时 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值