步骤一:判断是否有环。
快慢指针:一个走一步,一个走两步。最终能相遇就有环。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
bool hasCycle(ListNode *head) {
if(head==NULL) return false;
ListNode * fast=head;
ListNode * slow=head;
while(fast->next!=NULL)
{
fast = fast->next;
if(fast->next==NULL) return false;
fast = fast->next;
slow=slow->next;
if(fast == slow) return true;
}
return false;
}
};
步骤二:查找环的入口节点。
方法1:
先计算环的大小,从之前的相遇点一个指针走两步,一个指针走一步。再次相遇时慢指针的路程n就是环的节点个数。
然后两个指针从链表头出发,一个先走n步,另一个在表头。速度一样,都是走一步,当两者相遇时的节点就是环入口。
分析:令链表总长度为r,则先走n步的指针到达链表尾(即第二次到达入口节点)时走了(n-r)步;而链表头到环入口节点的距离为(n-r)。故两者在入口相遇。
方法2:
在步骤一中,设相遇点距环入口距离为b,链表头到环入口距离为a,环的长度为n。快指针走了a+b+kn(k为循环次数),慢指针走了(a+b)路程。因为快指针是慢指针的两倍速度,则路程也是两倍,即a+b+kn=2*(a+b)。可得a=kn-b=(k-1)n+(n-b)。
方法:一个指针从链表头开始走,另一个指针从相遇点开始走。相遇点就是环的入口节点。
快慢指针法:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *mid=judge(head);
if(mid==NULL) return NULL;
ListNode *start=head;
while(mid !=start ){
mid=mid->next;
start=start->next;
}
return mid;
}
ListNode *judge(ListNode * head){
if(head==NULL) return NULL;
ListNode * fast=head;
ListNode * slow=head;
while(fast->next != NULL){
fast = fast->next;
slow = slow->next;
if(fast->next==NULL) return NULL;
fast = fast->next;
if(fast == slow) return fast;
}
return NULL;
}
};
注意:直接指针判相等即可,如果通过数值会报错时间超时