冲激函数的卷积规律

冲激函数卷积规律

复 习 信 号 与 系 统 关 于 冲 激 函 数 的 卷 积 发 现 了 一 个 小 规 律 , 不 知 是 否 正 确 , 记 录 于 此 备 忘 : 定 义 O 为 某 种 线 性 时 不 变 操 作 算 子 ( 包 括 但 不 限 于 叠 加 如 微 积 分 、 倍 乘 、 时 移 等 操 作 ) , 有 以 下 规 律 : 复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:\\ 定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),\\有以下规律: O线
f ( t ) ∗ O { δ ( t ) } = O { f ( t ) } f(t)^{*} O\{\delta(t)\}=\mathrm{O}\{f(t)\} f(t)O{δ(t)}=O{f(t)}
如 : 如: f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)^{*} \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right) f(t)δ(tt0)=f(tt0) f ( t ) ∗ δ ( n ) ( t − t 0 ) = f ( n ) ( t − t 0 ) f(t)^{*} \delta^{(n)}\left(t-t_{0}\right)=f^{(n)}\left(t-t_{0}\right) f(t)δ(n)(tt0)=f(n)(tt0) r ( t ) = e ( t ) ∗ h ( t ) ( 对 冲 激 进 行 求 响 应 操 作 后 与 激 励 卷 积 即 对 激 励 求 响 应 ) r(t)=e(t)^{*} h(t)\\(对冲激进行求响应操作后与激励卷积即对激励求响应) r(t)=e(t)h(t) f ( t ) ∗ u ( t ) = ∫ − ∞ t f ( τ ) d τ ( u ( t ) = ∫ − ∞ t δ ( τ ) d τ ) f(t)^{*} u(t)=\int_{-\infty}^{t} f(\tau) d \tau\\(u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau) f(t)u(t)=tf(τ)dτu(t)=tδ(τ)dτ)

更多内容请关注微信公众号季捡猹长、b站搜索季捡猹长!

### 信号与系统的卷积计算图形化解释 #### 定义与概念 卷积是一种用于描述两个函数之间相互作用的操作,在连续时间和离散时间系统中都有广泛应用。具体来说,如果有一个输入信号 \( x(t) \) 和一个冲激响应 \( h(t) \),那么输出信号 \( y(t) \) 可以表示为这两个信号的卷积积分: \[ y(t)=\int_{-\infty}^{+\infty}{h(\tau)x(t-\tau)d\tau } \] 对于离散情况,则变为求和形式: \[ y[n]=\sum _{k=-\infty }^{\infty }{h[k]\cdot x[n-k]} \][^1] #### 图形化过程分解 为了更好地理解这一操作的过程,可以将其分为几个阶段来观察。 ##### 阶段一:翻转和平移 首先取其中一个函数(通常是\( h(t) \)),沿纵轴做镜像得到新的函数\( h(-t) \)。接着让这个新形成的图像沿着横坐标正方向移动距离 t ,形成\( h(t-\tau )\) 或者在离散情况下成为\( h[n-m] \) 。此时可以看到原本位于原点处的部分现在被移到了位置 t 上面去了。 ##### 阶段二:逐点相乘 当完成了上述平移之后,下一步就是把经过变换后的冲击响应同未改变过的输入信号对应起来,并且按照相同的时间索引值进行逐项相乘。即计算每一个时刻下的乘积累加结果作为最终输出的一部分贡献。 ##### 阶段三:累加求和/积分 最后一步是对所有这些瞬时产物执行累积求和(针对离散情形)或是积分运算(适用于连续场合)。这相当于收集来自整个时间段内的全部交互效果,从而得出完整的输出波形y(t)或y[n]. 以下是Python代码模拟该过程的一个例子: ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt def plot_convolution(x, h): n = len(x)+len(h)-1 # Compute the convolution using SciPy's convolve function. result = signal.convolve(x,h) fig, (ax_orig, ax_win, ax_spec) = plt.subplots(3, 1, sharex=True) ax_orig.plot(np.arange(len(x)), x,'r-',label='Input') ax_orig.set_title('Input Signal') ax_win.plot(np.arange(len(h)), h,'b-', label='Impulse Response') ax_win.set_title('Impulse Response') ax_spec.stem(range(n),result,linefmt='g-', markerfmt="C0o", basefmt=" ",use_line_collection=True,label='Convolved Output') ax_spec.set_title('Output after Convolution') for ax in [ax_orig, ax_win, ax_spec]: ax.grid(True) plt.tight_layout() plt.show() if __name__ == "__main__": input_signal=[1,2,3,4] impulse_response=[1,-1,1,-1] plot_convolution(input_signal,impulse_response) ``` 此脚本定义了一个名为`plot_convolution()` 的辅助函数用来绘制三个子图分别代表原始输入、脉冲响应以及两者经由卷积后产生的输出。通过调用SciPy库中的convolve方法完成实际数值上的卷积计算工作,并借助Matplotlib可视化工具包呈现出来便于直观感受其变化规律
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值