冲激函数卷积规律
复
习
信
号
与
系
统
关
于
冲
激
函
数
的
卷
积
发
现
了
一
个
小
规
律
,
不
知
是
否
正
确
,
记
录
于
此
备
忘
:
定
义
O
为
某
种
线
性
时
不
变
操
作
算
子
(
包
括
但
不
限
于
叠
加
如
微
积
分
、
倍
乘
、
时
移
等
操
作
)
,
有
以
下
规
律
:
复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:\\ 定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),\\有以下规律:
复习信号与系统关于冲激函数的卷积发现了一个小规律,不知是否正确,记录于此备忘:定义O为某种线性时不变操作算子(包括但不限于叠加如微积分、倍乘、时移等操作),有以下规律:
f
(
t
)
∗
O
{
δ
(
t
)
}
=
O
{
f
(
t
)
}
f(t)^{*} O\{\delta(t)\}=\mathrm{O}\{f(t)\}
f(t)∗O{δ(t)}=O{f(t)}
如
:
如:
如:
f
(
t
)
∗
δ
(
t
−
t
0
)
=
f
(
t
−
t
0
)
f(t)^{*} \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right)
f(t)∗δ(t−t0)=f(t−t0)
f
(
t
)
∗
δ
(
n
)
(
t
−
t
0
)
=
f
(
n
)
(
t
−
t
0
)
f(t)^{*} \delta^{(n)}\left(t-t_{0}\right)=f^{(n)}\left(t-t_{0}\right)
f(t)∗δ(n)(t−t0)=f(n)(t−t0)
r
(
t
)
=
e
(
t
)
∗
h
(
t
)
(
对
冲
激
进
行
求
响
应
操
作
后
与
激
励
卷
积
即
对
激
励
求
响
应
)
r(t)=e(t)^{*} h(t)\\(对冲激进行求响应操作后与激励卷积即对激励求响应)
r(t)=e(t)∗h(t)(对冲激进行求响应操作后与激励卷积即对激励求响应)
f
(
t
)
∗
u
(
t
)
=
∫
−
∞
t
f
(
τ
)
d
τ
(
u
(
t
)
=
∫
−
∞
t
δ
(
τ
)
d
τ
)
f(t)^{*} u(t)=\int_{-\infty}^{t} f(\tau) d \tau\\(u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau)
f(t)∗u(t)=∫−∞tf(τ)dτ(u(t)=∫−∞tδ(τ)dτ)
更多内容请关注微信公众号季捡猹长、b站搜索季捡猹长!