史上最全的支持向量机(SVM)公式推倒

本文详细介绍了支持向量机(SVM)的基本理论和应用,包括SVM最初解决二分类问题的背景,硬间隔、软间隔及核方法在SVM分类中的作用,并通过数学建模展示了如何寻找最大化间隔的超平面。通过对拉格朗日乘子法的应用,证明了有约束和无约束模型的等价性,最后讨论了SVM的对偶问题转换。
摘要由CSDN通过智能技术生成

支持向量机(SVM)

一、SVM最初是为了解决什么问题

在深度学习之前,提出SVM是为了解决二分类问题。

二、SVM分类

  • hard-margin SVM
  • soft-margin SVM
  • kernel SVM

三、基本理论

SVM

对于hard-marigin SVM,我们要找到一个超平面,使得与该超平面最近的点到此超平米的距离最大。因为如果距离很近的话会使得模型的鲁棒性很差,稍微有一点点噪声就可能使得SVM分类错误。如下图如果稍微加一点噪声,x1变到了x2,x3变到了x4那么就会出现分类错误。
SVM


  1. 数学建模
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
公式推倒
在这里插入图片描述
在这里插入图片描述

这里为了方便取r = 1。所以就可以将原问题最终建模正如下的凸优化问题(convex optimization
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

此问题显然是二次凸优化问题,先有的软件包一般都有解决此问题的方法直接调用。但是涉及到x维度很高的情况会使得运算很慢。所以我们还可以进一步优化求解。
上面的问题等价于:
在这里插入图片描述
其中拉格朗日函数:
在这里插入图片描述

接下来证明一下有约束模型与无约束模型等价:

在这里插入图片描述

  1.   1 − y i ( w T x i + b ) > 0 \ 1-y_i(w^Tx_i+b)>0  1yi(wTxi+b)>0 的时候,由于是求 max ⁡ α \max\limits_\alpha αmax所以, α → ∞ \alpha \to\infty α
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值