题目
-
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。
你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。
给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物? -
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物 -
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200 -
leetcode链接:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/submissions/
思路
- 动态规划,找出dp[ i ][ j ]的表达式,路径的起点和终点其实已经定下来,就是第一个和最后一个。
- dp[i][j] = grid[0][0] (i === 0, j === 0)
dp[i][j] = grid[i-1][j] (i !== 0, j === 0)
dp[i][j] = grid[i][j-1] (i === 0, j !== 0)
dp[i][j] = grid[i][j] + Math.max(dp[i-1][j], dp[i][j-1])
代码
/**
* @param {number[][]} grid
* @return {number}
*/
var maxValue = function (grid) {
if (!grid.length || !grid[0].length) return 0
const rowCounts = grid.length
const columnCounts = grid[0].length
const dp = new Array(rowCounts).fill().map(() => new Array(columnCounts).fill(0))
dp[0][0] = grid[0][0]
for (let i = 1; i < rowCounts; i++) {
dp[i][0] = dp[i-1][0] + grid[i][0]
}
for (let i = 1; i < columnCounts; i++) {
dp[0][i] = dp[0][i-1] + grid[0][i]
}
for (let i = 1; i < rowCounts; i++) {
for (let j = 1; j < columnCounts; j++) {
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]) + grid[i][j]
}
}
return dp[rowCounts-1][columnCounts-1]
}