【LeetCode】礼物的最大价值(JavaScript)

在一篇博客中,作者探讨了如何解决LeetCode上的一个问题——在给定的棋盘中,从左上角到右下角按路径收集礼物,求最大总价值。采用动态规划策略,通过取当前位置上一行或左边的最大值来更新当前位置的价值,以此达到最优化路径选择。示例给出了一个3x3的棋盘,解法将空间复杂度降低到O(1)。文章适合对动态规划感兴趣的读者,特别是希望提高JavaScript编程技巧的人群。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

这种就是使用动态规划,因为每一次的结果都靠前一次的结果。因为本题中只能向右或者向下移动一格,所以在下一步的结果中,可以取左边或者上边的最大值来相加。因为只关注左边和上边的值,所以可以直接在grid里修改值,可以减少空间复杂度为O(1)。

如果 i==0&&j==0,则为第一个,不需要修改。如果i==0,则为第一行,则只能取左边的值相加。如果j==0,则为第一列,则只能取上边的值相加。其余的则取左边和上边的最大值相加。

var maxValue = function(grid) {
    var m=grid.length,n=grid[0].length;
    for(var i=0;i<m;i++){
        for(var j=0;j<n;j++){
            if(i==0&&j==0) continue;
            if(i==0) grid[i][j] += grid[i][j-1];
            else if(j==0) grid[i][j] += grid[i-1][j];
            else{
                grid[i][j] += Math.max(grid[i][j-1],grid[i-1][j]);
            }
        }
    }
    return grid[m-1][n-1];
};

本文为作者关于LeetCode的解法

大神解法请自行搜索

如果觉得有用麻烦点个赞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值