【Google机器学习实践指南(线性回归篇)

🔍 Google机器学习实践指南(线性回归篇)

Google机器学习实战(3)-单变量线性回归核心解析,掌握房价预测模型


一、建模流程全景图

▲ 四大核心步骤:

数据可视化→特征工程→模型训练→预测推理


二、房价预测实战

1. 数据可视化分析

import matplotlib.pyplot as plt
plt.scatter(df['卧室数'], df['房价'])
plt.title("卧室数量与房价关系")

▲ 图1:历史数据展示卧室数与房价的正相关趋势

2. 线性关系探索

sns.regplot(x='卧室数', y='房价', data=df, line_kws={'color':'red'})

▲ 图2:红色回归线揭示特征与标签的数学关系

3. 单变量模型构建

✅ 核心公式

y' = w_1x + w_0

✅ 参数说明

三、多特征扩展模型

多维回归方程

y' = w_1x_1 + w_2x_2 + w_3x_3 + w_0

特征工程示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值