标题:347前k个高频元素-中等
题目
给你一个整数数组
nums
和一个整数k
,请你返回其中出现频率前k
高的元素。你可以按 任意顺序 返回答案。
示例1
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例2
输入: nums = [1], k = 1
输出: [1]
提示
- 1 <= nums.length <= 105
- k 的取值范围是 [1, 数组中不相同的元素的个数]
- 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的
进阶
所设计算法的时间复杂度 必须 优于 O(n log n)
,其中 n
是数组大小。
代码Java
public int[] topKFrequent(int[] nums, int k) {
int[] ans = new int[k];
HashMap<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
Vector<Set<Map.Entry<Integer, Integer>> > vector = new Vector<>();
Set<Map.Entry<Integer, Integer>> entries = map.entrySet();
return ans;
}
public int[] topKFrequent1(int[] nums, int k) {
int[] result = new int[k];
HashMap<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
Set<Map.Entry<Integer, Integer>> entries = map.entrySet();
// 根据map的value值正序排,相当于一个小顶堆
PriorityQueue<Map.Entry<Integer, Integer>> queue =
new PriorityQueue<>((o1, o2) -> o1.getValue() - o2.getValue());
for (Map.Entry<Integer, Integer> entry : entries) {
queue.offer(entry);
if (queue.size() > k) {
queue.poll();
}
}
for (int i = k - 1; i >= 0; i--) {
result[i] = queue.poll().getKey();
}
return result;
}