sql优化
1 避免使用select *
很多时候,我们写sql语句时,为了方便,喜欢直接使用select *,一次性查出表中所有列的数据。
反例:
select * from user where id=1;
在实际业务场景中,可能我们真正需要使用的只有其中一两列。查了很多数据,但是不用,白白浪费了数据库资源,比如:内存或者cpu。
此外,多查出来的数据,通过网络IO传输的过程中,也会增加数据传输的时间。
还有一个最重要的问题是:select *不会走覆盖索引,会出现大量的回表操作,而从导致查询sql的性能很低。
那么,如何优化呢?
正例:
select name,age from user where id=1;
sql语句查询时,只查需要用到的列,多余的列根本无需查出来。
2 用union all代替union
我们都知道sql语句使用union关键字后,可以获取排重后的数据。
而如果使用union all关键字,可以获取所有数据,包含重复的数据。
反例:
(select * from user where id=1)
union
(select * from user where id=2);
排重的过程需要遍历、排序和比较,它更耗时,更消耗cpu资源。
所以如果能用union all的时候,尽量不用union。
正例:
(select * from user where id=1)
union all
(select * from user where id=2);
除非是有些特殊的场景,比如union all之后,结果集中出现了重复数据,而业务场景中是不允许产生重复数据的,这时可以使用union。
3 小表驱动大表
小表驱动大表,也就是说用小表的数据集驱动大表的数据集。
假如有order和user两张表,其中order表有10000条数据,而user表有100条数据。
这时如果想查一下,所有有效的用户下过的订单列表。
可以使用in关键字实现:
select * from order where user_id in (select id from user where status=1)
也可以使用exists关键字实现:
select * from order where exists (select 1 from user where order.user_id = user.id and status=1)
前面提到的这种业务场景,使用in关键字去实现业务需求,更加合适。
为什么呢?
因为如果sql语句中包含了in关键字,则它会优先执行in里面的子查询语句,然后再执行in外面的语句。如果in里面的数据量很少,作为条件查询速度更快。
而如果sql语句中包含了exists关键字,它优先执行exists左边的语句(即主查询语句)。然后把它作为条件,去跟右边的语句匹配。如果匹配上,则可以查询出数据。如果匹配不上,数据就被过滤掉了。
这个需求中,order表有10000条数据,而user表有100条数据。order表是大表,user表是小表。如果order表在左边,则用in关键字性能更好。
总结一下:
in适用于左边大表,右边小表。exists适用于左边小表,右边大表。
不管是用in,还是exists关键字,其核心思想都是用小表驱动大表。
4 批量操作
如果你有一批数据经过业务处理之后,需要插入数据,该怎么办?
反例:
for(Order order: list){
orderMapper.insert(order):
}
在循环中逐条插入数据。
insert into order(id,code,user_id)
values(123,'001',100);
该操作需要多次请求数据库,才能完成这批数据的插入。
但众所周知,我们在代码中,每次远程请求数据库,是会消耗一定性能的。而如果我们的代码需要请求多次数据库,才能完成本次业务功能,势必会消耗更多的性能。
那么如何优化呢?
正例:
orderMapper.insertBatch(list):
提供一个批量插入数据的方法。
insert into order(id,code,user_id)
values(123,'001',100),(124,'002',100),(125,'003',101);
mybatis中使用
-
mapper中:
int multiInsert(List<Order> orderList); -
xml中:
<insert id="multiInsert" parameterType="java.util.List"> insert into order(id,code,user_id) values <foreach collection="list" item="item" separator=","> ( #{item.id,jdbcType=VARCHAR}, #{item.code,jdbcType=VARCHAR}, #{item.user_id,jdbcType=VARCHAR} ) </foreach> </insert> *jdbcType类型看实际使用情况
这样只需要远程请求一次数据库,sql性能会得到提升,数据量越多,提升越大。
但需要注意的是,不建议一次批量操作太多的数据,如果数据太多数据库响应也会很慢。批量操作需要把握一个度,建议每批数据尽量控制在500以内。如果数据多于500,则分多批次处理。
5 多用limit
有时候,我们需要查询某些数据中的第一条,比如:查询某个用户下的第一个订单,想看看他第一次的首单时间。
反例:
SELECT
id,
create_date
FROM
ORDER
WHERE
user_id = 123
ORDER BY
create_date ASC;
根据用户id查询订单,按下单时间排序,先查出该用户所有的订单数据,得到一个订单集合。然后在代码中,获取第一个元素的数据,即首单的数据,就能获取首单时间。
List<Order> list = orderMapper.getOrderList();
Order order = list.get(0);
虽说这种做法在功能上没有问题,但它的效率非常不高,需要先查询出所有的数据,有点浪费资源。
那么,如何优化呢?
正例:
SELECT
id,
create_date
FROM
ORDER
WHERE
user_id = 123
ORDER BY
create_date ASC
LIMIT 1;
使用limit 1,只返回该用户下单时间最小的那一条数据即可。
此外,在删除或者修改数据时,为了防止误操作,导致删除或修改了不相干的数据,也可以在sql语句最后加上limit。
例如:
UPDATE
ORDER SET
status = 0,
edit_time = now(3)
WHERE
id >= 100
AND id<200
LIMIT 100;
这样即使误操作,比如把id搞错了,也不会对太多的数据造成影响。
count使用
SQL查找是否"存在",别再count了!
根据某一条件从数据库表中查询 『有』与『没有』,只有两种状态,那为什么在写SQL的时候,还要SELECT count(*) 呢?
无论是刚入道的程序员新星,还是精湛沙场多年的程序员老白,都是一如既往的count
反例:目前多数人的写法
多次REVIEW代码时,发现如现现象:
业务代码中,需要根据一个或多个条件,查询是否存在记录,不关心有多少条记录。普遍的SQL及代码写法如下
#### SQL写法:
SELECT count(*) FROM table WHERE a = 1 AND b = 2
#### Java写法:
int nums = xxDao.countXxxxByXxx(params);
if ( nums > 0 ) {
//当存在时,执行这里的代码
} else {
//当不存在时,执行这里的代码
}
是不是感觉很OK,没有什么问题
优化方案
推荐写法如下:
#### SQL写法:
SELECT 1 FROM table WHERE a = 1 AND b = 2 LIMIT 1
#### Java写法:
Integer exist = xxDao.existXxxxByXxx(params);
if ( exist != NULL ) {
//当存在时,执行这里的代码
} else {
//当不存在时,执行这里的代码
}
SQL不再使用count,而是改用LIMIT 1,让数据库查询时遇到一条就返回,不要再继续查找还有多少条了
业务代码中直接判断是否非空即可
总结
根据查询条件查出来的条数越多,性能提升的越明显,在某些情况下,还可以减少联合索引的创建。
6 in中值太多
对于批量查询接口,我们通常会使用in关键字过滤出数据。比如:想通过指定的一些id,批量查询出用户信息。
sql语句如下:
SELECT
id,
name
FROM
category
WHERE
id IN (1, 2, 3...100000000);
如果我们不做任何限制,该查询语句一次性可能会查询出非常多的数据,很容易导致接口超时。
这时该怎么办呢?
SELECT
id,
name
FROM
category
WHERE
id IN (1, 2, 3...100)
LIMIT 500;
可以在sql中对数据用limit做限制。
不过我们更多的是要在业务代码中加限制,伪代码如下:
public List<Category> getCategory(List<Long> ids) {
if(CollectionUtils.isEmpty(ids)) {
return null;
}
if(ids.size() > 500) {
throw new BusinessException("一次最多允许查询500条记录")
}
return mapper.getCategoryList(ids);
}
还有一个方案就是:如果ids超过500条记录,可以分批用多线程去查询数据。每批只查500条记录,最后把查询到的数据汇总到一起返回。
不过这只是一个临时方案,不适合于ids实在太多的场景。因为ids太多,即使能快速查出数据,但如果返回的数据量太大了,网络传输也是非常消耗性能的,接口性能始终好不到哪里去。
7 增量查询
有时候,我们需要通过远程接口查询数据,然后同步到另外一个数据库。
反例:
select * from user;
如果直接获取所有的数据,然后同步过去。这样虽说非常方便,但是带来了一个非常大的问题,就是如果数据很多的话,查询性能会非常差。
这时该怎么办呢?
正例:
SELECT
*
FROM
USER
WHERE
id>#{lastId}
AND create_time >= #{lastCreateTime}
LIMIT 100;
按id和时间升序,每次只同步一批数据,这一批数据只有100条记录。每次同步完成之后,保存这100条数据中最大的id和时间,给同步下一批数据的时候用。
通过这种增量查询的方式,能够提升单次查询的效率。
8 高效的分页
有时候,列表页在查询数据时,为了避免一次性返回过多的数据影响接口性能,我们一般会对查询接口做分页处理。
在mysql中分页一般用的limit关键字:
SELECT
id,
name,
age
FROM
USER
LIMIT 10,20;
如果表中数据量少,用limit关键字做分页,没啥问题。但如果表中数据量很多,用它就会出现性能问题。
比如现在分页参数变成了:
SELECT
id,
name,
age
FROM
USER
LIMIT 1000000,20;
mysql会查到1000020条数据,然后丢弃前面的1000000条,只查后面的20条数据,这个是非常浪费资源的。
那么,这种海量数据该怎么分页呢?
优化sql:
SELECT
id,
name,
age
FROM
USER
WHERE
id > 1000000
LIMIT 20;
先找到上次分页最大的id,然后利用id上的索引查询。不过该方案,要求id是连续的,并且有序的。
还能使用between优化分页。
SELECT
id,
name,
age
FROM
USER
WHERE
id BETWEEN 1000000 AND 1000020;
需要注意的是between要在唯一索引上分页,不然会出现每页大小不一致的问题。
9 用连接查询代替子查询
mysql中如果需要从两张以上的表中查询出数据的话,一般有两种实现方式:子查询 和 连接查询。
子查询的例子如下:
SELECT
*
FROM
ORDER
WHERE
user_id IN (
SELECT
id
FROM
USER
WHERE
status = 1)
子查询语句可以通过in关键字实现,一个查询语句的条件落在另一个select语句的查询结果中。程序先运行在嵌套在最内层的语句,再运行外层的语句。
子查询语句的优点是简单,结构化,如果涉及的表数量不多的话。
但缺点是mysql执行子查询时,需要创建临时表,查询完毕后,需要再删除这些临时表,有一些额外的性能消耗。
这时可以改成连接查询。具体例子如下:
SELECT
o.*
FROM
ORDER o
INNER JOIN USER u ON
o.user_id = u.id
WHERE
u.status = 1
10 join的表不宜过多
根据阿里巴巴开发者手册的规定,join表的数量不应该超过3个。
反例:
SELECT
a.name,
b.name,
c.name,
d.name
FROM
a
INNER JOIN b ON
a.id = b.a_id
INNER JOIN c ON
c.b_id = b.id
INNER JOIN d ON
d.c_id = c.id
INNER JOIN e ON
e.d_id = d.id
INNER JOIN f ON
f.e_id = e.id
INNER JOIN g ON
g.f_id = f.id
如果join太多,mysql在选择索引的时候会非常复杂,很容易选错索引。
并且如果没有命中中,nested loop join 就是分别从两个表读一行数据进行两两对比,复杂度是 n^2。
所以我们应该尽量控制join表的数量。
正例:
SELECT
a.name,
b.name,
c.name,
a.d_name
FROM
a
INNER JOIN b ON
a.id = b.a_id
INNER JOIN c ON
c.b_id = b.id
如果实现业务场景中需要查询出另外几张表中的数据,可以在a、b、c表中冗余专门的字段,比如:在表a中冗余d_name字段,保存需要查询出的数据。
不过我之前也见过有些ERP系统,并发量不大,但业务比较复杂,需要join十几张表才能查询出数据。
所以join表的数量要根据系统的实际情况决定,不能一概而论,尽量越少越好。
11 join时要注意
我们在涉及到多张表联合查询的时候,一般会使用join关键字。
而join使用最多的是left join和inner join。
left join:求两个表的交集外加左表剩下的数据。inner join:求两个表交集的数据。
使用inner join的示例如下:
SELECT
o.id,
o.code,
u.name
FROM
ORDER o
INNER JOIN USER u ON
o.user_id = u.id
WHERE
u.status = 1;
如果两张表使用inner join关联,mysql会自动选择两张表中的小表,去驱动大表,所以性能上不会有太大的问题。
使用left join的示例如下:
SELECT
o.id,
o.code,
u.name
FROM
ORDER o
LEFT JOIN USER u ON
o.user_id = u.id
WHERE
u.status = 1;
如果两张表使用left join关联,mysql会默认用left join关键字左边的表,去驱动它右边的表。如果左边的表数据很多时,就会出现性能问题。
要特别注意的是在用left join关联查询时,左边要用小表,右边可以用大表。如果能用inner join的地方,尽量少用left join。
12 控制索引的数量
众所周知,索引能够显著的提升查询sql的性能,但索引数量并非越多越好。
因为表中新增数据时,需要同时为它创建索引,而索引是需要额外的存储空间的,而且还会有一定的性能消耗。
阿里巴巴的开发者手册中规定,单表的索引数量应该尽量控制在5个以内,并且单个索引中的字段数不超过5个。
mysql使用的B+树的结构来保存索引的,在insert、update和delete操作时,需要更新B+树索引。如果索引过多,会消耗很多额外的性能。
那么,问题来了,如果表中的索引太多,超过了5个该怎么办?
这个问题要辩证的看,如果你的系统并发量不高,表中的数据量也不多,其实超过5个也可以,只要不要超过太多就行。
但对于一些高并发的系统,请务必遵守单表索引数量不要超过5的限制。
那么,高并发系统如何优化索引数量?
能够建联合索引,就别建单个索引,可以删除无用的单个索引。
将部分查询功能迁移到其他类型的数据库中,比如:Elastic Seach、HBase等,在业务表中只需要建几个关键索引即可。
13 选择合理的字段类型
char表示固定字符串类型,该类型的字段存储空间的固定的,会浪费存储空间。
ALTER TABLE ORDER
ADD COLUMN code char(20) NOT NULL;
varchar表示变长字符串类型,该类型的字段存储空间会根据实际数据的长度调整,不会浪费存储空间。
alter table order
add column code varchar(20) NOT NULL;
如果是长度固定的字段,比如用户手机号,一般都是11位的,可以定义成char类型,长度是11字节。
但如果是企业名称字段,假如定义成char类型,就有问题了。
如果长度定义得太长,比如定义成了200字节,而实际企业长度只有50字节,则会浪费150字节的存储空间。
如果长度定义得太短,比如定义成了50字节,但实际企业名称有100字节,就会存储不下,而抛出异常。
所以建议将企业名称改成varchar类型,变长字段存储空间小,可以节省存储空间,而且对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
我们在选择字段类型时,应该遵循这样的原则:
- 能用数字类型,就不用字符串,因为字符的处理往往比数字要慢。
- 尽可能使用小的类型,比如:用bit存布尔值,用tinyint存枚举值等。
- 长度固定的字符串字段,用char类型。
- 长度可变的字符串字段,用varchar类型。
- 金额字段用decimal,避免精度丢失问题。
还有很多原则,这里就不一一列举了。
14 提升group by的效率
我们有很多业务场景需要使用group by关键字,它主要的功能是去重和分组。
通常它会跟having一起配合使用,表示分组后再根据一定的条件过滤数据。
反例:
SELECT
user_id,
user_name
FROM
ORDER
GROUP BY
user_id
HAVING
user_id <= 200;
这种写法性能不好,它先把所有的订单根据用户id分组之后,再去过滤用户id大于等于200的用户。
分组是一个相对耗时的操作,为什么我们不先缩小数据的范围之后,再分组呢?
正例:
SELECT
user_id,
user_name
FROM
ORDER
WHERE
user_id <= 200
GROUP BY
user_id
使用where条件在分组前,就把多余的数据过滤掉了,这样分组时效率就会更高一些。
其实这是一种思路,不仅限于group by的优化。我们的sql语句在做一些耗时的操作之前,应尽可能缩小数据范围,这样能提升sql整体的性能。
15 索引优化
sql优化当中,有一个非常重要的内容就是:索引优化。
很多时候sql语句,走了索引,和没有走索引,执行效率差别很大。所以索引优化被作为sql优化的首选。
索引优化的第一步是:检查sql语句有没有走索引。
那么,如何查看sql走了索引没?
可以使用explain命令,查看mysql的执行计划。
例如:
explain select * from `order` where code='002';
结果:

通过这几列可以判断索引使用情况,执行计划包含列的含义如下图所示:

索引失效的场景
准备工作:
-
创建user表
创建一张user表,表中包含:
id、code、age、name和height字段。CREATE TABLE `user` ( `id` int NOT NULL AUTO_INCREMENT, `code` varchar(20) COLLATE utf8mb4_bin DEFAULT NULL, `age` int DEFAULT '0', `name` varchar(30) COLLATE utf8mb4_bin DEFAULT NULL, `height` int DEFAULT '0', `address` varchar(30) COLLATE utf8mb4_bin DEFAULT NULL, PRIMARY KEY (`id`), KEY `idx_code_age_name` (`code`,`age`,`name`), KEY `idx_height` (`height`) ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin此外,还创建了三个索引:
id:数据库的主键idx_code_age_name:由code、age和name三个字段组成的联合索引。idx_height:普通索引
-
插入数据
为了方便给大家做演示,我特意向user表中插入了3条数据:
INSERT INTO sue.user (id, code, age, name, height) VALUES (1, '101', 21, '周星驰', 175,'香港'); INSERT INTO sue.user (id, code, age, name, height) VALUES (2, '102', 18, '周杰伦', 173,'台湾'); INSERT INTO sue.user (id, code, age, name, height) VALUES (3, '103', 23, '苏三', 174,'成都'); -
查看数据库版本
为了防止以后出现不必要的误会,在这里有必要查一下当前数据库的版本。
select version();查出当前的mysql版本号为:
8.0.21 -
查看执行计划
在mysql中,如果你想查看某条sql语句是否使用了索引,或者已建好的索引是否失效,可以通过
explain关键字,查看该sql语句的执行计划,来判断索引使用情况。例如:
explain select * from user where id=1;执行结果:

从图中可以看出,由于id字段是主键,该sql语句用到了
主键索引。
1. 不满足最左匹配原则
之前我已经给code、age和name这3个字段建好联合索引:idx_code_age_name。
该索引字段的顺序是:
- code
- age
- name
如果在使用联合索引时,没注意最左前缀原则,很有可能导致索引失效喔,不信我们一起往下看。
1.1 哪些情况索引有效?
先看看哪些情况下,能走索引。
explain select * from user
where code='101';
explain select * from user
where code='101' and age=21
explain select * from user
where code='101' and age=21 and name='周星驰';
执行结果:

上面三种情况,sql都能正常走索引。
其实还有一种比较特殊的场景:
explain select * from user
where code = '101' and name='周星驰';
执行结果:

查询条件原本的顺序是:code、age、name,但这里只有code和name中间断层了,掉了age字段,这种情况也能走code字段上的索引。
看到这里,不知道聪明的你,有没有发现这样一个规律:这4条sql中都有code字段,它是索引字段中的第一个字段,也就是最左边的字段。只要有这个字段在,该sql已经就能走索引。
这就是我们所说的最左匹配原则。
1.2 哪些情况索引失效?
前面我已经介绍过,建立了联合索引后,在查询条件中有哪些情况索引是有效的。
接下来,我们重点看看哪些情况下索引会失效。
explain select * from user
where age=21;
explain select * from user
where name='周星驰';
explain select * from user
where age=21 and name='周星驰';
执行结果:

从图中看出这3种情况下索引确实失效了。
说明以上3种情况不满足最左匹配原则,说白了是因为查询条件中,没有包含给定字段最左边的索引字段,即字段code。
2. 使用了select *
在《阿里巴巴开发手册》中明确说过,查询sql中禁止使用select * 。
那么,你知道为什么吗?
废话不多说,按照国际惯例先上一条sql:
explain
select * from user where name='苏三';
执行结果:

在该sql中用了select *,从执行结果看,走了全表扫描,没有用到任何索引,查询效率是非常低的。
如果查询的时候,只查我们真正需要的列,而不查所有列,结果会怎么样?
非常快速的将上面的sql改成只查了code和name列,太easy了:
explain
select code,name from user
where name='苏三';
执行结果:

从图中执行结果不难看出,该sql语句这次走了全索引扫描,比全表扫描效率更高。
其实这里用到了:覆盖索引。
如果select语句中的查询列,都是索引列,那么这些列被称为覆盖索引。这种情况下,查询的相关字段都能走索引,索引查询效率相对来说更高一些。
而使用select *查询所有列的数据,大概率会查询非索引列的数据,非索引列不会走索引,查询效率非常低。
3. 索引列上有计算
介绍本章节内容前,先跟大家一起回顾一下,根据id查询数据的sql语句:
explain select * from user where id=1;
执行结果:

从图中可以看出,由于id字段是主键,该sql语句用到了主键索引。
但如果id列上面有计算,比如:
explain select * from user where id+1=2;
执行结果:

从上图中的执行结果,能够非常清楚的看出,该id字段的主键索引,在有计算的情况下失效了。
4. 索引列用了函数
有时候我们在某条sql语句的查询条件中,需要使用函数,比如:截取某个字段的长度。
假如现在有个需求:想查出所有身高是17开头的人,如果sql语句写成这样:
explain select * from user where height=17;
该sql语句确实用到了普通索引:

但该sql语句肯定是有问题的,因为它只能查出身高正好等于17的,但对于174这种情况,它没办法查出来。
为了满足上面的要求,我们需要把sql语句稍稍改造了一下:
explain select * from user where SUBSTR(height,1,2)=17;
这时需要用到SUBSTR函数,用它截取了height字段的前面两位字符,从第一个字符开始。
执行结果:

你有没有发现,在使用该函数之后,该sql语句竟然走了全表扫描,索引失效了。
5. 字段类型不同
在sql语句中因为字段类型不同,而导致索引失效的问题,很容易遇到,可能是我们日常工作中最容易忽略的问题。
到底怎么回事呢?
请大家注意观察一下t_user表中的code字段,它是varchar字符类型的。
在sql语句中查询数据时,查询条件我们可以写成这样:
explain
select * from user where code="101";
执行结果:

从上图中看到,该code字段走了索引。
温馨提醒一下,查询字符字段时,用双引号
“和单引号'都可以。
但如果你在写sql时,不小心把引号弄掉了,把sql语句变成了:
explain
select * from user where code=101;
执行结果:

你会惊奇的发现,该sql语句竟然变成了全表扫描。因为少写了引号,这种小小的失误,竟然让code字段上的索引失效了。
这时你心里可能有一万个为什么,其中有一个肯定是:为什么索引会失效呢?
答:因为code字段的类型是varchar,而传参的类型是int,两种类型不同。
此外,还有一个有趣的现象,如果int类型的height字段,在查询时加了引号条件,却还可以走索引:
explain select * from user
where height='175';
执行结果:

从图中看出该sql语句确实走了索引。int类型的参数,不管在查询时加没加引号,都能走索引。
这是变魔术吗?这不科学呀。
答:mysql发现如果是int类型字段作为查询条件时,它会自动将该字段的传参进行隐式转换,把字符串转换成int类型。
mysql会把上面列子中的字符串175,转换成数字175,所以仍然能走索引。
接下来,看一个更有趣的sql语句:
select 1 + '1';
它的执行结果是2,还是11呢?
好吧,不卖关子了,直接公布答案执行结果是2。
mysql自动把字符串1,转换成了int类型的1,然后变成了:1+1=2。
但如果你确实想拼接字符串该怎么办?
答:可以使用concat关键字。
具体拼接sql如下:
select concat(1,'1');
接下来,关键问题来了:为什么字符串类型的字段,传入了int类型的参数时索引会失效呢?
答:根据mysql官网上解释,字符串’1’、’ 1 '、'1a’都能转换成int类型的1,也就是说可能会出现多个字符串,对应一个int类型参数的情况。那么,mysql怎么知道该把int类型的1转换成哪种字符串,用哪个索引快速查值?
感兴趣的小伙伴可以再看看官方文档:https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
6. like左边包含%
模糊查询,在我们日常的工作中,使用频率还是比较高的。
比如现在有个需求:想查询姓李的同学有哪些?
使用like语句可以很快的实现:
select * from user where name like '李%';
但如果like用的不好,就可能会出现性能问题,因为有时候它的索引会失效。
不信,我们一起往下看。
目前like查询主要有三种情况:
- like ‘%a’
- like ‘a%’
- like ‘%a%’
假如现在有个需求:想查出所有code是10开头的用户。
这个需求太简单了吧,sql语句如下:
explain select * from user
where code like '10%';
执行结果:

图中看出这种%在10右边时走了索引。
而如果把需求改了:想出现出所有code是1结尾的用户。
查询sql语句改为:
explain select * from user
where code like '%1';
执行结果:

从图中看出这种%在1左边时,code字段上索引失效了,该sql变成了全表扫描。
此外,如果出现以下sql:
explain select * from user
where code like '%1%';
该sql语句的索引也会失效。
下面用一句话总结一下规律:当like语句中的%,出现在查询条件的左边时,索引会失效。
那么,为什么会出现这种现象呢?
答:其实很好理解,索引就像字典中的目录。一般目录是按字母或者拼音从小到大,从左到右排序,是有顺序的。
我们在查目录时,通常会先从左边第一个字母进行匹对,如果相同,再匹对左边第二个字母,如果再相同匹对其他的字母,以此类推。
通过这种方式我们能快速锁定一个具体的目录,或者缩小目录的范围。
但如果你硬要跟目录的设计反着来,先从字典目录右边匹配第一个字母,这画面你可以自行脑补一下,你眼中可能只剩下绝望了,哈哈。
7. 列对比
上面的内容都是常规需求,接下来,来点不一样的。
假如我们现在有这样一个需求:过滤出表中某两列值相同的记录。比如user表中id字段和height字段,查询出这两个字段中值相同的记录。
这个需求很简单,sql可以这样写:
explain select * from user
where id=height
执行结果:

意不意外,惊不惊喜?索引失效了。
为什么会出现这种结果?
id字段本身是有主键索引的,同时height字段也建了普通索引的,并且两个字段都是int类型,类型是一样的。
但如果把两个单独建了索引的列,用来做列对比时索引会失效。
8. 使用or关键字
我们平时在写查询sql时,使用or关键字的场景非常多,但如果你稍不注意,就可能让已有的索引失效。
不信一起往下面看。
某天你遇到这样一个需求:想查一下id=1或者height=175的用户。
你三下五除二就把sql写好了:
explain select * from user
where id=1 or height='175';
执行结果:

没错,这次确实走了索引,恭喜被你蒙对了,因为刚好id和height字段都建了索引。
但接下来的一个夜黑风高的晚上,需求改了:除了前面的查询条件之后,还想加一个address=‘成都’。
这还不简单,sql走起:
explain select * from user
where id=1 or height='175' or address='成都';
执行结果:

结果悲剧了,之前的索引都失效了。
你可能一脸懵逼,为什么?我做了什么?
答:因为你最后加的address字段没有加索引,从而导致其他字段的索引都失效了。
注意:如果使用了
or关键字,那么它前面和后面的字段都要加索引,不然所有的索引都会失效,这是一个大坑。
9. not in和not exists
在我们日常工作中用得也比较多的,还有范围查询,常见的有:
- in
- exists
- not in
- not exists
- between and
重点聊聊前面四种。
9.1 in关键字
假如我们想查出height在某些范围之内的用户,这时sql语句可以这样写:
explain select * from user
where height in (173,174,175,176);
执行结果:

从图中可以看出,sql语句中用in关键字是走了索引的。
9.2 exists关键字
有时候使用in关键字时性能不好,这时就能用exists关键字优化sql了,该关键字能达到in关键字相同的效果:
explain select * from user t1
where exists (select 1 from user t2 where t2.height=173 and t1.id=t2.id)
执行结果:

从图中可以看出,用exists关键字同样走了索引。
9.3 not in关键字
上面演示的两个例子是正向的范围,即在某些范围之内。
那么反向的范围,即不在某些范围之内,能走索引不?
话不多说,先看看使用not in的情况:
explain select * from user
where height not in (173,174,175,176);
执行结果:

你没看错,索引失效了。
看如果现在需求改了:想查一下id不等于1、2、3的用户有哪些,这时sql语句可以改成这样:
explain select * from user
where id not in (173,174,175,176);
执行结果:

你可能会惊奇的发现,主键字段中使用not in关键字查询数据范围,任然可以走索引。而普通索引字段使用了not in关键字查询数据范围,索引会失效。
9.4 not exists关键字
除此之外,如果sql语句中使用not exists时,索引也会失效。具体sql语句如下:
explain select * from user t1
where not exists (select 1 from user t2 where t2.height=173 and t1.id=t2.id)
执行结果:

从图中看出sql语句中使用not exists关键后,t1表走了全表扫描,并没有走索引。
10. order by的坑
在sql语句中,对查询结果进行排序是非常常见的需求,一般情况下我们用关键字:order by就能搞定。
但我始终觉得order by挺难用的,它跟where或者limit关键字有很多千丝万缕的联系,一不小心就会出问题。
Let go
10.1 哪些情况走索引?
首先当然要温柔一点,一起看看order by的哪些情况可以走索引。
我之前说过,在code、age和name这3个字段上,已经建了联合索引:idx_code_age_name。
10.1.1 满足最左匹配原则
order by后面的条件,也要遵循联合索引的最左匹配原则。具体有以下sql:
explain select * from user
order by code limit 100;
explain select * from user
order by code,age limit 100;
explain select * from user
order by code,age,name limit 100;
执行结果:

从图中看出这3条sql都能够正常走索引。
除了遵循最左匹配原则之外,有个非常关键的地方是,后面还是加了limit关键字,如果不加它索引会失效。
10.1.2 配合where一起使用
order by还能配合where一起遵循最左匹配原则。
explain select * from user
where code='101'
order by age;
执行结果:

code是联合索引的第一个字段,在where中使用了,而age是联合索引的第二个字段,在order by中接着使用。
假如中间断层了,sql语句变成这样,执行结果会是什么呢?
explain select * from user
where code='101'
order by name;
执行结果:

虽说name是联合索引的第三个字段,但根据最左匹配原则,该sql语句依然能走索引,因为最左边的第一个字段code,在where中使用了。只不过order by的时候,排序效率比较低,需要走一次filesort排序罢了。
10.1.3 相同的排序
order by后面如果包含了联合索引的多个排序字段,只要它们的排序规律是相同的(要么同时升序,要么同时降序),也可以走索引。
具体sql如下:
explain select * from user
order by code desc,age desc limit 100;
执行结果:

该示例中order by后面的code和age字段都用了降序,所以依然走了索引。
10.1.4 两者都有
如果某个联合索引字段,在where和order by中都有,结果会怎么样?
explain select * from user
where code='101'
order by code, name;
执行结果:

code字段在where和order by中都有,对于这种情况,从图中的结果看出,还是能走了索引的。
10.2 哪些情况不走索引?
前面介绍的都是正面的用法,是为了让大家更容易接受下面反面的用法。
好了,接下来,重点聊聊order by的哪些情况下不走索引?
11.2.1 没加where或limit
如果order by语句中没有加where或limit关键字,该sql语句将不会走索引。
explain select * from user
order by code, name;
执行结果:

从图中看出索引真的失效了。
10.2.2 对不同的索引做order by
前面介绍的基本都是联合索引,这一个索引的情况。但如果对多个索引进行order by,结果会怎么样呢?
explain select * from user
order by code, height limit 100;
执行结果:

从图中看出索引也失效了。
10.2.3 不满足最左匹配原则
前面已经介绍过,order by如果满足最左匹配原则,还是会走索引。下面看看,不满足最左匹配原则的情况:
explain select * from user
order by name limit 100;
执行结果:

name字段是联合索引的第三个字段,从图中看出如果order by不满足最左匹配原则,确实不会走索引。
10.2.4 不同的排序
前面已经介绍过,如果order by后面有一个联合索引的多个字段,它们具有相同排序规则,那么会走索引。
但如果它们有不同的排序规则呢?
explain select * from user
order by code asc,age desc limit 100;
执行结果:

从图中看出,尽管order by后面的code和age字段遵循了最左匹配原则,但由于一个字段是用的升序,另一个字段用的降序,最终会导致索引失效。

533

被折叠的 条评论
为什么被折叠?



