基于大数据的高速铁路接触网支持装置零部件全寿命周期管理分析(源码+万字报告+部署讲解等)

目录
摘要 2
Abstract 5
1绪论 10
1.1研究背景及意义 10
1.2国内外研究现状 12
1.2.1接触网非接触式检测研究进展 13
1.2.2表面缺陷检测技术研究现状 16
12.3 生命周期管理 19
1.3本文的主要研究内容与技术路线 20
2基于大数据的高铁接触网全寿命周期管理分析基础 21
2.1高铁接触网全生命周期管理 21
2.1.1高铁接触网概述 21
2.1.2高铁接触网全生命周期管理 23
2.2数据分析技术 27
2.2.1大数据概述 27
2.2.2数据仓库技术 28
2.2.3数据分析技术 29
2.3高速铁路接触网全寿命周期管理概述 30
2.4高速铁路接触网全寿命周期管理理论 31
2.4.1系统理论 31
2.4.2协同理论 32
2.4.3集成理论 33
3高铁接触网全寿命周期管理数据分析关键技术分析 34
3.1高速铁路接触网全寿命周期管理数据分析目标和方案 34
3.1.1高速铁路接触网全寿命周期管理数据分析目标 34
3.1.2高速铁路接触网全寿命周期管理数据分析方案 35
3.2基于SQLServe的数据分析技术 35
3.2.1数据分析工具选取 35
3.2.2数据分析算法原理 36
3.3高速铁路接触网全寿命周期管理数据预处理 36
3.3.1数据预处理概述 36
3.3.2接触网全寿命周期管理数据处理 37
3.4高速铁路接触网全寿命周期管理数据仓库设计 38
3.4.1事实数据表设计 38
3.4.2维度数据表设计 38
3.4.3数据仓库架构设计 38
3.5高速铁路接触网全寿命周期管理数据分析设计 38
3.6 基于BIM的高铁接触网信息模型 39
3.6.1 基于BIM的高铁接触网信息模型的内涵 40
3.6.2 高铁接触网信息分类 42
3.6.3 基于BIM的高铁接触网信息模型总体框架 45
4高速铁路接触网全寿命周期管理大数据分析平台 46
4.1高速铁路接触网全寿命周期管理平台 46
4.1.1高速铁路接触网全寿命周期管理平台业务架构 46
4.1.2高速铁路接触网全寿命周期管理平台应用架构 47
4.1.3高速铁路接触网全寿命周期管理平台技术架构 47
4.2大数据分析平台技术架构及数据抽取 48
4.2.1大数据分析平台技术架构 48
4.2.2数据抽取方案 49
4.3大数据分析方法 50
4.3.1离线数据挖掘分析 50
4.3.2实时计算与挖掘 51
4.4 基于深度学习的高铁接触网支持装置零部件识别方法 51
4.4.1 R-CNN系列方法 52
4.4.2 模型结构选择 57
4.4.3 模型结构优化 60
4.5基于大数据的全寿命周期管理分析 65
4.5.1基于聚类划分的综合质量评价 65
4.5.2高铁接触网全寿命周期管理的潜在关联分析 66
4.5.3趋势预测 66
4.5.4实时检定告警 67
4.5.5全寿命周期管理预测 67
4.5.6基于CCA方法的不合格数据与故障数据相关性分析 68
4.6 基于图像处理技术的缺陷检测方法 68
4.6.1 基于局部周期估计的绝缘子缺陷检测 68
4.6.2 基于二维Gabor小波与距离变换的旋转双耳耳片断裂缺陷检测 76
4.7 图像处理技术与深度学习技术相结合的细微裂纹检测方法 85
4.7.1 算法框架介绍 85
4.7.2 基于深度学习的零部件关键区域分割 87
4.7.3基于单尺度栅格的裂纹区域初识别 90
4.7.4 基于一致性敏感哈希的裂纹区域重识别 94
4.7.5 检测方法评价 100
5高速铁路接触网全寿命周期管理信息化的实现 102
5.1高速铁路接触网全寿命周期管理信息系统概述 102
5.1.1接触网全寿命周期管理信息系统简介 102
5.1.2接触网全寿命周期管理信息平台的结构简介 103
5.2接触网全寿命周期管理信息平台的支撑载体 103
5.2.1接触网全寿命周期管理信息平台的基础环境建设 103
5.2.2接触网全寿命周期管理信息平台的管理模块 106
5.3 面向智能运维的高铁接触网BIM数字化交付 106
5.3.1 基于BIM的高铁接触网交付信息模型 107
5.3.2 基于BIM的高铁接触网运维管理工作流程 114
6结论与展望 118
6.1本文的主要研究结论 118
6.2有待进一步研究的问题 119
参考文献 120
致谢 124

1绪论
1.1研究背景及意义
接触网系统作为高速铁路牵引供电系统的重要组成部分,承担着将牵引变电所输出的供电电流输送给高速列车的重要任务。在列车运行过程中,受电弓与接触网之间稳定的滑动接触是高速列车实现良好集电的重要条件。由于受电弓和接触网之间复杂的机电相互作用,接触网系统的故障率通常很高,成为高速铁路运营安全的薄弱环节。因此,有必要准确高效地检测和监测接触网支撑装置部件中的各种缺陷,及时修复和维护存在的安全隐患。传统的接触网支撑装置部件检测主要依靠人工检测,检测效率低,检测工作量大,检测结果容易受到检测人员主观因素的影响。因此,它不能满足当前高速铁路的运营要求。因此,我们有必要采用更先进的检测技术。2012年,原铁道部发布了《高速铁路供电安全检测与监控系统总体技术规范(6C系统)》[3],旨在实现高速铁路牵引供电系统全方位、全覆盖的全面自动化检测与监控。6C系统采用非接触式检测方式,利用安装在检测屋顶上的高清摄像头,对接触式网络支撑设备的组件进行高精度成像检测。根据检测结果,统计分析接触网支撑装置各部件的状态,形成维护建议,指导排除潜在的接触网故障。与传统的手动检测方法相比,非接触检测方法具有设备少、投资成本低、行车干扰小的优点[4],具有较高的推广价值。然而,目前用于架空接触系统的非接触检测方法在收集现场图像后仍然需要手动辅助来区分故障和部件缺陷。随着中国高速铁路运营里程的不断增长(截至2018年底,中国高速铁路总运营里程已超过2.9万公里),需要处理的数据量显著增加。“手动读图”的检测方式,由于检测人员的视觉疲劳,必然会造成疏漏,影响故障的及时处理,增加事故发生的概率。
图像处理与机器视觉技术的不断发展为接触网支持装置零部件缺陷检测的智能化与自动化提供了技术基础。如何利用图像处理和机器视觉技术对接触网检测车采集的现场图像进行自动处理,实现对图像语义信息的深入理解,对接触网支撑装置部件缺陷进行分类识别,越来越受到铁路部门的关注。目前,尽管中国在该领域的研究取得了一定进展,但在算法的可靠性、准确性和运行速度方面仍有很大的提升空间。本文提出了一系列基于图像处理和机器视觉技术的架空接触网支撑装置部件缺陷自动检测方法,包括悬臂、绝缘子、悬臂连接器等。文章中使用的接触网支撑装置的所有图像都是使用高速铁路接触网成像检测车XLN4C-O1获得的,检测车的实物图像如图1-1所示。检查车车顶安装了多个高清摄像头,负责从多个角度拍摄沿线联络网保障设备的图像。在实际检测过程中,为了避免铁路沿线复杂背景的干扰,图像采集过程通常在夜间进行,使用安装在摄像机两侧的LED补光灯为摄像机提供光源。本文采用了相同的图像采集方法。在探测车运行过程中,采用红外测距技术对前方架空接触网支柱进行探测。当探测车与立柱之间的距离达到特定值时,安装在车顶上的高清摄像头被触发,完成图像采集。图像采集过程的示意图如图1-2所示。高清摄像头拍摄的图像分辨率为6600 x 4400像素,可以清晰地捕捉到架空接触网支撑装置各部件的详细信息,满足部件缺陷检测的要求。在完成一组接触网支撑装置的图像采集后,探测车上的图像采集系统将同时记录支撑装置的编号,并将其与采集到的接触网图像一起保存在工作站中。在使用相应的算法完成缺陷检测后,如果发现安全隐患,可以根据当前图像对应的支持设备编号定位故障,并派遣工作人员对相关部件进行维修和更换。

图1-1接触网成像检测车XLN4C-01

图1-2接触网成像示意图
由于接触网支持装置零部件在利用检测车获得的接触网支持装置全局图像中所占比例较小,直接检测全局图像中的缺陷会导致大量的计算冗余,通常无法获得良好的检测结果。因此,本文包括两个步骤来检测架空接触网支撑装置部件中的缺陷。第一步是在全局图像中识别不同类型的联系人网络支持设备组件,并捕获全局图像中组件的子图像。第二步是根据不同类型部件的缺陷特征,使用不同的检测方法来检测它们的缺陷。本文分别讨论了上述两个问题,涉及图像特征提取、机器学习和深度学习、信号和图像处理技术等多个交叉领域。
1.2国内外研究现状
1.2.1接触网非接触式检测研究进展
目前,高速铁路接触网非接触检测已广泛应用于接触网几何参数检测、弓网电流采集检测、接触网磨损检测、接触线风偏检测、异物入侵检测等日常维护监测问题。文献采用双目线性阵列主动视觉测量方法,利用安装在检测车顶部的两个高速摄像头,对接触网的高度、拉出值等几何参数进行实时动态检测。参考文献[fs_iil]使用安装在电梯顶部的工业相机来捕捉激光发射器发射的激光束在接触线表面上的反射光斑,并基于图像坐标系、相机坐标系、,和世界坐标系。为了提高实时检测和测量精度,参考文献[yo]使用均值偏移和粒子滤波算法来跟踪和定位激光光斑。文学“川采用粒子群优化算法,有效地削弱了粒子滤波过程中产生的粒子退化问题。考虑到探测车在运行过程中所产生的振动会导致车体相对于轨道中心的水平位移和相对于轨道表面的垂直位移,这会造成显著的nt对检测结果的干扰,文献[9]建立了基于接触线几何模型的卡尔曼滤波方程,以消除车辆振动引起的测量误差。文献[12]使用安装在探测车底部的一对激光相机传感器拍摄相邻侧梁的照片。在静态状态下,利用数字图像处理技术提取轨距特征点,计算摄像机与相邻侧轨轨距点之间的水平和垂直距离,并将其用作静态校准。在动态检测中,通过实时提取轨道轨距点,获得车辆运行过程中摄像机位置相对于轨距点的动态偏差。调整位移并与静态校准产生差异,以获得车辆振动引起的偏移,然后对测量结果进行相应的校正。参考文献[13]利用计算机视觉技术推导了车辆振动偏移补偿的计算方法。上述方法已在实验过程中得到验证,可以显著降低接触网组参数的测量误差。由于在检测车辆运动期间车轮和轨道之间的空转和滑动现象,定位数据中可能存在累积误差。误差值将随着检测距离的增加而继续增加,最终导致检测结果完全无效。针对这一问题,参考文献[12]利用机器视觉技术实时识别接触网沿线的特征点(如定位管、悬臂、锚段等),并均匀消除了接触网定位管和轨道绝缘接头处的累积误差,取得了良好的实验结果。定位器的斜率作为接触网几何参数的重要组成部分,长期以来一直是接触网非接触检测的研究热点。参考文献[14]提出了一种基于直线检测和Adaboost的定位器识别方法,可以实现定位器在图中的精确定位。参考文献[is]使用NCC角点匹配算法来匹配检测序列图像中检测到的角点,并使用Keishi工作来关注少量的王日/。J,并找到一种匹配差分方法。狄连正的日常运动1李茶日/。J降低了测量结果的不确定度。参考文献[17]提出了一种基于模糊ID3决策树的快速角点检测算法,提高了计算速度。将图像中的定位器、定位管和其他设备细化为直线。根据霍夫变换理论,在极坐标中返回直线特征,然后计算定位器在定位装置中的斜率。
参考文献[19-21]使用机器视觉方法来监测受电弓滑板与接触线以下表面之间的接触。摄像机安装在车顶上,用于捕捉受电弓滑板与接触线之间的接触面积。参考文献[19-21]使用霍夫变换提取受电弓滑板与图中接触线之间的接触点,计算两者之间的接触点通过。根据受电弓滑板表面接触点的分布,确定滑板表面是否存在严重磨损。参考文献[20]将受电弓滑板和接触线之间的接触点在图像的不同帧中的位置视为一维信号上的点,并且将上述一维信号输入到基于D-Markov模型的状态机中用于异常检测。该方法可以有效识别弓网系统的不良状况,如受电弓滑板表面过热和接触点位置异常。参考文献[21]实现了基于图像聚类方法的弓网飞弧故障检测。参考文献[22]使用计算机视觉方法测量和分析列车运行过程中接触线的横向位移,以评估受电弓滑板的损坏情况。参考文献[23]使用模板匹配来跟踪和识别接触线上某一点的垂直位移变化,从而获得受电弓和接触网的垂直位移。
对于接触网磨损的测量,国外开发的几种接触网磨损检测系统可分为三类:图像检测法、激光扫描法和剩余高度测量法。其中,图像测量方法使用一排相交的相机来覆盖拉出值的范围,并使用多组并行的数据采集和处理通道,使其更容易实现[24]。西班牙的MEDES系统、荷兰的ATON系统、德国的WWS系统和意大利的WIRECHECK系统都使用光源照明来接触电线的下磨损表面,并使用高速相机来收集接触表面图像。通过硬件和软件对数字图像进行处理,获得了钢丝磨损表面的宽度值,从而实现了磨损的实时检测。针对收集到的接触线磨损图像中边缘模糊和对比度低的问题,文献利用曲线波变换来增强接触线磨损的图像。参考文献[}z6]基于双目视觉原理,采用递归近似高斯滤波方法去除图像中的噪声,并通过边缘检测提取接触线边缘来计算磨损宽度。分析了车辆振动对磨损检测的影响。参考文献[27,28]利用机器视觉技术,提出了一种风区接触网风偏姿态的实时地面检测方法。该方法利用基于对比度拉伸的一阶亮度矩优化算法,实现不同光照条件下彩色图像目标特征点的准确有效分割,并构造了基于面积和几何方法的运动目标偏移和扭曲特征提取算法。通过匹配静态和动态特征点的目标表面,并补偿观测参考运动的不稳定性,实现了接触线、承重电缆和悬垂串等接触悬挂结构的三分量运动检测(横向位移、升力风偏差和扭转角)。
接触网的悬挂中存在异物可能会造成严重后果,如弯曲和拉网。要及时发现,必要时要预警并降低船头通过。此外,接触网支撑结构上出现的异物(如树木、鸟巢等)也极有可能导致设备跳闸故障。因此,及时发现这些危险情况是必要的。参考文献[29]提出了一种用于架空接触网中悬浮异物的故障检测系统。该系统使用三个摄像头在车辆前方70米范围内拍摄到接触网的图像,并基于立体三角测量重建接触网的区域,以完成对异物的检测。参考文献[30]设计了一种基于视频监控图像序列的铁路沿线智能监控系统,可以及时检测铁路沿线人员或动物的入侵行为并发出警报。参考文献[31]使用贝叶斯模型检测了架空接触线支柱腕臂区域附近的“高风险区域”的异常,可以检测入侵树木和鸟巢等异物。参考文献[32]利用Sobel水平边缘检测算子基于鸟巢相对位置的不变性来识别硬波束之间的鸟巢。参考文献[33]基于这样一个特征,即鸟巢通常使用不同方向和长度的树枝来构建架空接触系统中最稳定的结构。对图的每个子窗口中细线元素的长度和方向进行直方图统计,并将其作为子窗口的局部描述性特征输入到支持向量机中进行鸟巢识别。参考文献[34]提出了一种双鉴别器生成对抗性网络(DDGAN),用于识别图像的每个子窗口中是否存在鸟巢,克服了训练过程中样本不平衡的问题。该模型具有良好的半监督学习能力。参考文献[35]基于稀疏编码算法,使用正常接触网络图像作为样本来训练字典。学习的字典用于稀疏拟合测试图像,重建误差和稀疏项的总和用作图像中是否存在异物的判断标准。这可以实现对未知异物的通用检测。由于接触线和承重电缆的张力增加以及环境影响,接触网支撑装置各部件的应力和振动也相应增加,从而使接触网支撑设备各部件的安全问题日益突出。不同的学者针对接触网支撑装置的不同部件提出了不同的智能识别和检测算法。参考文献[36]通过绝缘体模板匹配方法和光反射点特性实现了绝缘体识别,并利用小波奇异性特征实现了绝缘体异物检测。参考文献[37]利用第二代弯曲波变换对图像进行方向滤波,利用数学形态学增强弯曲波的聚类系数,最后利用条带能量进行统计,可以准确地确定绝缘子的故障位置。参考文献[38]利用六种不同类型的绝缘体仿射不变矩模板来实现绝缘体识别,然后进行扩展操作来增强绝缘体边界,并最终利用灰度统计参数来实现绝缘体异物检测。参考文献[392]通过SIFT特征匹配和SURF特征点检测完成了绝缘子和旋转双耳元件的识别,然后使用边缘和灰度统计来识别其故障。文献[43,44]利用HOG特征和Adaboost分类器实现了对承力索支撑装置全局图像中承力索底座和斜支撑套管的识别,并分别利用基于Hough变换的直线和圆弧检测实现了承力索缺失和销松动的诊断。参考文献[45]利用Pyramid Bagof Words PBoW模型来定位分布在不同部件上的开口销,并根据螺栓附近连接域的分布,诊断出两种类型的故障:开口销缺失和开口销开口角不足。参考文献[46]提出了一种基于级联深度卷积神经网络的悬链线紧固件检测方法,该方法可以识别紧固件的三种状态:正常、脱离和潜在脱离。参考文献[47]提出了一种等电位线rec。
1.2.2表面缺陷检测技术研究现状
目前,基于机器视觉的接触网络非接触检测已得到广泛应用。该技术在接触网几何参数检测和磨损检测的应用领域已经相对成熟,在接触网的设计、施工和日常维护中发挥了巨大作用。然而,对接触网支撑装置零部件缺陷检测方法的研究仍处于探索阶段。尽管已经针对特定故障提出了相应的检测方案,但在应用过程中,其鲁棒性和稳定性仍有待提高,对一些相对难以检测的缺陷(如裂纹)的研究仍然有限。在其他工业领域,基于机器视觉的表面缺陷检测技术也受到了学者们的广泛关注和关注。目前,在机械零部件制造与监测、纺织品缺陷检测、农产品质量评估、电子制造以及钢轨、道路等基础设施的维护和维修等领域已经取得了一系列研究成果,可为接触式网络支持设备组件缺陷检测方法的研究提供参考。在机械零部件制造和监测领域,参考文献[49]提出了一种基于形态特征的机械零部件表面划痕检测方法。该方法改进了传统的基于方向梯度的区域增长算法,保证了划痕提取的完整性,降低了漏检率。参考文献[50]提出了一种用于分割凸轮轴表面缺陷区域的邻域加权分割方法,该方法可以实现对凸轮轴表面损伤、砂眼、磨削缺陷等典型缺陷的检测。参考文献[51]使用图像配准方法来检测土木结构钢接头中的螺栓松动故障。通过分析不同时间段拍摄的钢接头图像之间的配准误差,确定两次拍摄之间是否存在螺栓松动故障。参考文献[52]利用基于SIFT特征描述符的图像拼接技术,拼接钢制旋转部件不同表面的图像,实现表面缺陷的快速定位。参考文献[53]使用钢轨两侧的高速线路扫描相机来捕捉列车经过的图像序列。通过在时域中对检测序列和标准序列中的图像进行归一化,实现了初始故障定位。此外,利用图像的先验知识和高级语义特征来实现对车辆下各种部件中不同缺陷的同时检测。参考文献[54]构建了一个基于卷积神经网络的多任务学习框架,用于铁路轨枕和轨枕紧固件的缺陷检测。该框架基于图像分割任务识别不同材料的轨枕及其缺陷,并基于对象检测任务识别不同类型的轨枕紧固件以及损坏或丢失的钢轨紧固件。两个任务对应于网络的不同分支,通过共享卷积层实现网络的端到端训练。在纺织品缺陷检测领域,参考文献[55]提出了一种基于显著区域检测的纺织品缺陷检测方法。参考文献[56]首先基于织物表面的纹理特征生成纹理信息矩阵,以实现缺陷区域的粗略定位,然后使用w-L,I模型准确提取缺陷区域。参考文献[57]首先对纺织品图像[58]进行基于纹理聚类的形态成分分解,然后使用分解得到的每个晶格上的Gabor特征来识别纺织品表面的缺陷。
在农产品质量评估领域,文献[59]使用中值滤波、形态学运算和分水岭变换等图像处理算法来识别分拣机中的开裂、污染、缺陷大豆和残留豆荚。参考文献[60]使用支持向量回归和多属性决策系统对芒果的成熟度和品质进行评估,并根据评估结果,使用模糊增量学习将芒果分为四个等级。参考文献[}6i]将具有表面缺陷的苹果的检测分为两个步骤。第一步是根据检测到的缺陷候选区域的数量,直接过滤出有明显缺陷的苹果。第二步使用加权RVM分类器来确认苹果表面上的缺陷候选区域是否为假阳性,并根据识别结果进一步区分在第一步中无法确定的苹果样本。参考文献[}6z]提出了一种基于流形学习的马铃薯机械损伤机器视觉检测方法,解决了马铃薯表面不平整、机械损伤检测困难的问题。在印刷电路板制造领域,参考文献[63]提出了一种基于相似性测量的高效PCB表面缺陷检测方法。该方法利用线性代数理论生成对称相似性度量矩阵,并将其秩用作检测图像和标准图像之间的相似性度量。该方法不需要对图像进行特征提取。参考文献[64]提出了一种基于检测图像和标准图像之间角区域一致性的PCB表面缺陷检测方法,可以避免图像对齐误差对检测结果的影响。然而,对于角点提取困难的应用场景,该方法的适用性将显著降低。参考文献[65]提出了一种基于期望最大化技术的快速图像对齐方法。该方法首先使用最大期望算法的E步长提取检测图像和标准图像之间的公共边缘信息,然后使用M步长计算两者之间的几何变换参数,可用于PCB和液晶偏振器的缺陷检测。参考文献[}66]使用图像处理技术评估了PCB板的冲压质量。参考文献[67]使用运动物体跟踪技术中的ViBe算法来检测集成电路焊点中的异常(将正常焊点视为待检测图像序列中的静止物体,将异常焊点视为变形或移动物体)。参考文献[}6s]基于微分几何方法检测集成电路封装板的氧化面积。针对路面缺陷检测问题,参考文献[69]提出了一种水泥路面检测方法。该方法首先采用概率松弛法对裂纹进行粗定位,然后采用局部自适应阈值设置算法实现精确的裂纹定位。参考文献[70]使用模糊C均值聚类对图像中的超像素区域进行聚类,然后使用形态学重建来检测沥青路面上的坑洞。参考文献[71]描述了基于Hough变换特征和局部二值模式特征(LBP特征)的图像中每个网格的边缘方向和纹理特征,从而对包含裂纹和不包含裂纹的网格进行分类,达到了裂纹检测的目的。参考文献[72]还将裂纹检测问题转化为网格分类问题。通过融合网格中不同尺度的局部特征来完成网格分类,包括基于灰度的局部特征、基于梯度的局部特征和尺度空间特征。为了提高路面缺陷的检测精度,文献[73,74]将深度卷积神经网络引入路面缺陷检测领域,并取得了良好的实验结果。
针对钢轨表面缺陷检测,参考文献[75]提出了一种基于图像灰度梯度特征的检测方法。该方法可以在不同的轨道环境下对疤痕和裂纹缺陷进行良好的检测。参考文献[76]提出了一种基于视觉显著性的钢轨表面剥离现象检测方法。该方法利用块局部对比度测量算法对预处理后的钢轨图像进行显著性检测,检测到的显著性强的区域可以确定为存在剥离故障。参考文献[77]利用基于随机马尔可夫场的改进高斯混合模型对钢轨表面缺陷进行快速检测和分割,并使用最大期望算法优化模型参数。参考文献[78]利用改进的k-均值聚类算法对钢轨表面缺陷进行了分割。参考文献[79]首先利用简单的迭代聚类算法在钢轨表面生成超像素区域,然后使用基于DAISY特征描述符的词袋模型从超像素区域中提取特征。最后,利用随机森林分类器对含有裂纹的超像素区域进行识别,实现钢轨表面裂纹的检测。通过对国内外近期文献的研究发现,基于机器视觉的表面缺陷检测技术主要可以分为以下几个分支:图像处理技术,如形态学运算;比较检测到的图像和已知的非故障图像之间的差异;基于断层区域分割;基于网格分类等,目前在上述工业领域,对架空接触网支撑装置部件的自动缺陷检测技术的研究还远远不够。因此,如何将其他工业领域的成功经验应用于架空接触网支撑装置中元件的缺陷检测问题,成为一个现实问题。
12.3 生命周期管理
(1) 国外研究的情况
全寿命周期管理理论起源于瑞典的铁路系统,并在美国得到发展,1947年全寿命周期管理被引入经济和技术分析中。20世纪60年代,美国在军事采购中全面应用生命周期成本法,以便通过生命周期成本管理减少军事开支。后来,全生命周期的概念被应用于交通、能源、航空航天等领域,取得了良好的效果。 20世纪70年代后,全生命周期管理的概念逐渐扩展到其他国家,80年代后,美国完善了全生命周期描述的相关规定。随后,日本充分采纳了美国的先进经验,拓展了全寿命周期管理的思路,以充分发挥效率、减少损失为目标,提高设备的整体效率,使企业在设备的全寿命周期内获得最大效益。全寿命周期概念在电力系统的应用起步较晚,美国率先将全寿命周期概念应用于核电站的建设和运行,全寿命周期在电力系统的应用逐渐扩展到变压器、发电机和其他系统。
现在全球对全生命周期概念的应用比较成熟,主要集中在美国和欧洲国家,他们用全生命周期管理来分析和管理项目,并结合本国的实际情况实施创新,如欧洲国家是把全生命周期管理、绿色能源和可持续发展结合起来,通过在成本中引入环境成本,以达到环保、可持续发展的目的。.
一些研究人员将生命周期管理应用于电气系统,对每个项目成本进行了精益分析。一些研究人员还将生命周期管理应用于电缆分析,分析了电缆生命周期对成本的影响,并提出了电缆设计原则和改造原则。文献[15]将生命周期管理和外部环境结合起来,对分布式制造进行分析,提出了分布式制造系统在不同环境中的应用原则。在[16]中,计算了变压器负载情况和全寿命成本之间的关系,并提出了不同负载情况下全寿命成本的趋势。文献[17]提出了一个计算全寿命成本的模型和一个混合光伏和风力发电系统的经济评估方法。在[18]中,介绍了一个风力发电管理系统的整个生命周期的两个计算实例。在[19]中,提出了基于全寿命周期管理的电气设备的节能标准。根据国外研究人员对全生命周期管理的研究,全生命周期管理显然要优于传统的项目管理方法。
(2) 国内研究状况
近年来,中国也逐渐将生命周期管理应用于设备管理。特别是改革开放后,我国积极采用国外先进技术和管理理念,1987年中国设备管理协会成立了设备全寿命周期管理专业委员会,1990年11月,设备全寿命周期管理专业委员会召开了第一次学术会议,会上发表各类全寿命周期管理论文70余篇。虽然与世界上最先进的国家相比,中国在全生命周期理论的研究和应用方面相对较晚,但仍取得了重大成就。
近年来,随着高速铁路技术管理水平的普遍提高,研究人员更加认识到全寿命周期理念在高速铁路系统建设中的重要性,并加强了在这一领域的研究力度。目前,国家铁路集团正在逐步在电网建设领域应用和实施生命周期管理,并开展了多项互联网络应用生命周期管理的研究,一些铁路基层能源管理部门也开展了一些创新工作。但是,全寿命周期在配网中的应用还需要进一步发展,全寿命周期管理体系在互联网络的设计中也需要进一步完善。
此外,国内研究人员对生命周期管理在电力系统工程中的应用也开展了大量卓有成效的研究工作。有研究者结合上海世博会配网工程的应用实例,探讨了生命周期管理在配网工程管理中的应用,提出在计算网络成本时,将偶然停电造成的损失转化为成本,以将供电安全作为生命周期管理的关键指标纳入配网决策中。
2017年,根据 "三证一标 "和新的技术进展,结合智能电网的技术要求,国家电网公司基建部组织制定了变电站全寿命周期设计与建设技术导则和输电线路全寿命周期设计与建设技术导则,以技术指南的形式规定了变电站和输电线路的设计要求。近年来,能源企业在配网工程项目管理中积极引入全寿命周期理念,全寿命周期理念不断更新,并根据时代要求引入新内容。
1.3本文的主要研究内容与技术路线
本论文通过以下几个部分来实现。
探索高铁接触网全生命周期管理的方法和特点,划分配网项目的生命周期阶段,从设备层面和系统层面两个层面分析生命周期构成,利用大数据技术建立接触网全生命周期管理系统。
分析互联网络全寿命周期管理的大数据管理系统的基本组成部分,建立基于全寿命周期的互联网络管理数学模型,提出在高铁互联网络中实施全寿命周期管理的理念和方法。
最后,上海铁路局配电处根据项目的实际情况,以该处所辖连接网的全寿命周期管理分析为例,验证了本研究提出的体系的科学性和有效性,证明了全寿命周期管理方法在连接网管理中的实用价值。
在设计大数据数据采集系统时,需要设计预测性的传感器,利用预测技术和方法(如基于物理故障或基于知识的方法)实现故障预测,并将预测的数据输入大数据健康管理平台。因此,传感器的预测设计技术可以作为故障预测技术的入口,最终实现互连网络系统的健康管理。

2基于大数据的高铁接触网全寿命周期管理分析基础
2.1高铁接触网全生命周期管理
2.1.1高铁接触网概述
(1)高铁接触网基本结构
高速铁路接触网一般由支柱和基础、支撑装置、定位装置、接触悬挂和供电辅助设施组成,如图2-1所示。支柱和基础是接触网的重要承载设施,承受接触网的所有机械载荷。支撑装置主要用于承载缆索的悬挂和定位装置的支撑。定位装置主要用于固定接触线。接触悬挂是承载电缆、接触线和组件的统称。它是牵引电流和受电弓滑动的载体,是接触网的核心部件。此外,接触网还必须配备防雷、接地、标识和安全设施,以确保自身设备和人员的安全。高速铁路联络网作为高速铁路的重要组成部分,本质上是一种特殊类型的输电线路。一方面,接触网通过集电装置(受电弓)向高速铁路机车提供电能。

图2-1高铁接触网基本结构图
(2)高铁接触网基本特征
1)环境特性:高铁接触网的环境特性突出表现在空间环境、气候环境、电磁环境和运营环境等4个方面。空间环境一一高铁接触网与附近的各种建筑物在空间位置上必须协调,以满足建筑限界、电气安全和弓网匹配三方面的要求;气候环境一一高铁接触网是露天设备,应考虑大气湿度、温度、冰、雪、污染、雷电等对接触网技术状态的影响;电磁环境一一高铁接触网属于典型的非对称高压输电线路,应采取有效地保护措施,减少电磁场对范围内电气设备和人体的不良影响;运营环境一一作为一种特殊的电力设备,高铁接触网具有特定的工作环境和条件,电力牵引单元特性、受电弓型号、运营组织方式均会影响接触网运行。
2)负荷特性:高铁机车作为高铁接触网电力牵引负荷,使接触网长期处于电气过渡状态,承受非常大的电气冲击,导致高铁接触网系统更易发生短路故障。
3)无备用特性:与其他电气设备不同,高铁接触网无法配置备用设备。这也决定了高铁接触网的唯一性和脆弱性。由于处于露天环境和电力负荷双重作用下,其性能和寿命均受到严重考验。
4)机电复合特性:高铁接触网是典型的机电复合系统,只有机电特性同时达到质量要求,且满足使用性能,才能保证良好的电能传输。
2.1.2高铁接触网全生命周期管理
本研究首先对高铁接触网全生命周期业务内容进行分析,总结高铁接触网全
生命周期管理的内涵,为下文研究提供理论支撑。
2.1.2.1高铁接触网全生命周期
高铁接触网全生命周期是指从规划开始,到设计,到施工,到运维,一直到
拆除的全过程,各阶段具体内容如下:
(1)规划阶段:根据《中长期铁路网规划》等铁路建设长期规划,对高铁建设项目的立项和决策进行预可行性和可行性研究,预测项目前景,研究项目在铁路网和交通中的作用和意义;明确线路平面图、连接点平面图、建设规模、主要技术标准和设计原则;提出建设时间和工期、主要工程量、投资估算和资金计划;从技术和经济角度全面深入论证该项目的必要性,并分析其对自然和社会环境的影响。在上述成果的基础上,编制预可行性和可行性研究报告。在规划阶段,要明确高铁接触网的研究依据、气象条件、工程范围、设备类型、主要技术参数(如导线高度、结构高度、跨度长度、锚段长度、杆侧间隙、绝缘距离等),并估算其主要工程量和成本,作为建设高速铁路联络网的前提和依据。
(2)设计阶段:该阶段是高速铁路接触网全生命周期的重要组成部分,分为初步设计和施工设计两个阶段。其主要任务是优化和细化可行性研究结果,以生成技术解决方案,并将功能需求和标准转化为可实施的模型。它是进行施工和后期运行维护的重要保证。高速铁路接触网的设计涉及大量的计算、统计、绘制(建模)工作,内容复杂,可分为数据计算、荷载计算、安装曲线计算、支柱布置、锚段划分、装配结构计算与部件选择、基础计算与选择、工程数据统计。
(3)施工阶段:高铁接触网施工基本流程如图2-2所示,可分为施工准备、施工测量、上下工程施工、工程检查、竣工验收等阶段。施工准备是整个施工过程中的首要环节,直接影响开工日期、工程进度、工程质量安全和工程效率。要做好人员、材料、设备、技术、外部环境等各方面的准备;施工测量是为了验证接触网的设计模型与现场实际情况是否一致,并确定支柱基础的位置;工程下部施工内容主要包括基坑开挖、基础浇筑、立柱安装找正等;上部施工内容主要包括悬挑柱组装、接触线及承重电缆安装、接触悬挂调整、设备安装;工程检查可分为三种方法:人工行走检查、工作车检查和车载设备检查,以确保接触网中各种设备的安装参数符合设计要求;竣工验收分为静态验收、动态验收、初步验收、安全评估和正式验收五个阶段。该项目移交给运营单位,其中一个重要方面是高铁接触网竣工数据的移交。

图2-2 高铁接触网工程施工基本流程图
高铁接触网的的基本特征是技术密集型、跨学科、协同性,涉及面广,影响因素多。因此,为了确保高速铁路接触网建设的顺利进行,应运用科学的管理理论和方法对高速铁路接触线建设过程进行全面管理,包括计划管理、生产管理、技术管理、信息管理、安全质量管理、成本管理,进度管理等,如图2-3所示。

图2-3 高铁接触网施工管理主要内容
(4)运维阶段:指高铁接触网全部竣工并验收合格后,由接触网设备管理单 位保持其技术状态、安全可靠地向列车供电的全过程,可分为运行管理、检测管 理和维修管理三部分。运营管理是指对高速铁路接触网设备的基本信息、技术数据、运行状态、维护质量、成本等进行管理;检测管理是指对接触网系统和设备的状态进行监测、检测、检查和评估,准确掌握设备的技术性能、特点、操作规程和安全状况,及时维修或更换不符合运行要求的接触网设备,确保接触网安全运行;维护管理是指对处于使用寿命内的高速铁路接触网设备进行维护和保养,使其处于正常状态,对接近或超过使用寿命的设备进行更换,以确保接触网稳定运行。
2.1.2.2 高铁接触网全生命周期管理的内容
高铁接触网全生命周期管理的内涵是面向高铁接触网络全生命周期的各个阶段。通过信息的协同创建、集成、共享和重用,实现了组织、流程、信息和系统的有机集成,支持高铁联络网整个生命周期的信息共享、业务协作和流程控制,从而减少浪费,避免各种错误,在保证高铁联络网稳定可靠运行的同时,降低建设和运营成本,实现价值最大化。高铁接触系统全生命周期管理概念是高铁接触领域全寿命管理概念的延伸和延伸。信息的创建、集成、共享和重用是高速铁路通信系统全生命周期管理的核心。信息、组织、过程和系统是高速铁路通信网络全生命周期管理的关键要素。信息元素是指在高铁联络网络的整个生命周期中信息的集成;组织要素是指能够实现组织内高铁联络网全生命周期管理的组织管理模式和成员角色;流程要素是指高铁联络网整个生命周期的工作流程和信息流;系统元素是指支持创建高速铁路网BIM信息的软件系统。基于上述分析,可以得出结论,高铁联络网的全生命周期管理是高铁联络网络设计、施工管理和运维管理的集成。它是对整个生命周期各要素的集成管理,主要分为以下几个方面:信息集成和管理:高速铁路联络网的全生命周期信息管理不仅是对设备信息的管理,更重要的是对设计、施工、,和操作流程,包括基于BIM的信息存储、集成、交换、数据版本和权限管理。流程管理:基于高铁联络网BIM信息模型,通过对各环节工作流程的梳理和优化,建立面向高铁联络网络全生命周期的工作流程,实现协同设计、数字化施工管理、,高铁接触网BIM的智能运维管理,支持全生命周期各方协同并行工作。参与者管理:围绕全生命周期目标,在所有参与者之间管理和分配任务、责任和组织,寻求他们之间的沟通和协作,从而减少冲突,确保施工进度、成本、质量、安全等目标的实现。设备管理:高速铁路接触网设备的全生命周期管理主要包括生产管理和运行状态跟踪。其中,前者侧重于设备生产过程规划、跟踪、分析设备参数、生产计划、供应商、库存状态等,确保设备按时到位,避免项目延误;后者对设备的健康状况进行跟踪、监测和管理,以确保高铁联络网的稳定可靠运行。一体化管控:针对高铁接触网全生命周期管理目标,利用先进的信息技术,对安全、质量、进度、资源、经济、绿色环保等方面进行综合分析和预测,实现全生命周期效益最大化。
2.1.2.3 高铁接触网全生命周期管理框架
基于高铁接触网全生命周期管理的内涵,结合全生命周期管理的各个维度, 本研究对高铁接触网全生命周期管理框架进行分析和归纳,由以下5个层次组成, 如图2-4所示。

图2-4 高铁接触网全生命周期管理框架
(1)数据层面:数据是高铁接触网全生命周期管理的核心,利用BIM技术实 现全生命周期接触网产品数据、过程数据及非结构化数据的完整表达,以数据流 带动工作流和信息流,实现全生命周期的信息共享。
(2)技术层面:BIM技术、云计算、物联网、大数据等一系列技术的集成应 用为高铁接触网全生命周期规划、设计、施工、运营管理各环节的协同工作提供 了必要支撑条件。
(3)工具层面:设计、建模、仿真软件等工具或平台是高铁接触网的全生命 周期设计、分析及生产的必要辅助手段,而无线射频(RFID)、二维码、传感器和 智能终端设备等为高铁接触网全生命周期管理提供了支撑工具。
(4)组织层面:高铁接触网全生命周期管理是建立在建设方、设计防、施工 方、供应商、监理方、运营方等各组织相互配合基础上的协同工作方式。
(5)阶段层面:高铁接触网全生命周期包括规划、设计、施工、运营维护及 拆除等多个阶段,形成了高铁接触网全生命周期管理的整体流程。
通过数据、技术、工具、阶段与组织等5个层面的相互关联、相互支持,形 成了高铁接触网全生命周期管理架构,为高铁接触网全生命周期各阶段的信息共 享、协同工作、数字化管控奠定了基础。
2.2数据分析技术
2.2.1大数据概述
作为大数据研究的先驱,麦肯锡认为大数据是 “一个数据集合,其内容不能用传统的数据库软件工具来存储、保存、管理和长期分析”。业界普遍认为,大数据具有以下 "4V "特征。
(1) 大数据规模(体积)。 这是大数据的一个基本特征。与过去只有少数组织可以投入大量物力、财力和人力,通过实地调查或抽样调查获取数据不同,互联网技术的快速发展和广泛使用,使得互联网用户数量急剧增加,他们可以通过点击、查看、编辑、分享等活动在短时间内产生大量的数据。大数据不仅包括存储在传统关系型数据库中的结构化数据,如库存和销售数据,还包括未经处理的、半结构化的和非结构化的数据,以及企业收集和存储的文档数据,如网站日志、音频和视频数据、网页、来自移动电话的流媒体和嵌入式GPS定位数据,以及实时传感器数据。
(3)数据价值密度低(Value )。 随着大数据中数据量的几何级数增长,分析人员通过分析这些海量数据集所能获得的信息量并没有成比例增长,但数据挖掘方法却变得更加困难,这恰恰反映了大数据的价值密度低,也反映了大数据分析的复杂性以及对速度和及时性的关注程度。
4.速度:大数据的一个具体特征是1秒定律–数据产生和更新的速度非常快,导致了巨大的数据量。用户每分钟都在生产、更新和传输数据。对信息的获取不再那么直接,这就要求处理速度。
大数据分析的核心是能够从现有的大量数据中快速提取有价值的信息。在这项研究中,大数据技术在中国铁路的应用主要分为四个方面:客户关系管理、加强市场分析和预测、提高运输收入管理、发展现代铁路物流。
2.2.2数据仓库技术
1992年,William H. Inmon在他的出版物(+Building tl}e Data Warehouse)中定义,数据仓库(D W)是一个从关系数据库中提取的主题性的、综合的、非易失性的信息集合,它是为了支持管理者的决策过程而组装、设计和建造的。"一个时间变化的、非易失性的数据集集合。 数据仓库系统是一个数据库环境,为整合来自不同应用系统的历史数据提供一个单一平台,其核心是数据仓库。其架构主要分为四个部分:源数据层、数据存储和管理层、OLAP服务器层和前端分析工具层。 数据源:它是整个数据仓库系统的基本数据源。数据源可以是公司原有的在线交易处理(OLTP )数据库,它存储着各种类型的业务数据和文件数据,也可以是由第三方提供的外部数据或其他外部文件。 ②数据抽取、转换和加载工具(ETL):是数据仓库的核心和灵魂,遵循统一的规则对来自不同应用或其他存储环境的数据和信息进行整合,并进行一定的转换、管理,提高数据质量和价值,完成数据从数据源到目标数据仓库的转换。 ③元数据:是数据信息,用于描述数据仓库中数据的结构、位置和创建方法的信息,位于数据仓库的上层,可以通过元数据仓库进行管理和访问。元数据根据其目的可以分为管理元数据和用户元数据,前者存储用于开发和管理存储库系统的技术细节的信息,如存储库结构和算法原理的描述,后者存储用于帮助最终用户理解实际存储库系统的信息。 ④数据仓库数据库:作为整个数据仓库系统的核心,数据仓库为用户提供详细数据和汇总数据等海量数据的存储支持,以及快速检索数据的能力。源数据在经过提取、转换和加载等几个ETL过程后被存储在数据仓库中。 ⑤ OLAP服务器:与数据库应用的经典两层CIS结构不同,整个数据仓库系统采用三层C/S模式,由客户、多维数据分析服务器(OLAP服务器)和数据仓库服务器组成,根据多维模型组织分析所需的数据。这不仅提高了数据集成度,而且有利于多视角、多层次的分析,进一步加强和规范了分析和决策支持服务,减少了整个系统的数据传输量。 6)前端分析工具:为分析人员和决策者提供数据访问和分析,使他们能够从数据仓库中提取各种额外的决策支持信息。目前,前端分析工具主要包括OLAP工具、查询工具、可视化工具、报表工具、提取工具等,可以为用户生成各种汇总报表、数据分析和提取结果。 建立资源库的过程可以分为四个主要阶段:资源库设计、资源库建模、资源库部署、资源库运行和维护,如图所示。
①数据仓库设计 数据仓库设计是在分析数据仓库应用系统的对象、数据和环境要求的基础上,对技术环境,如硬件、网络、接口、平台等进行技术评估和准备。数据仓库设计主要包括制定建设数据仓库的长期和短期计划,确定每个阶段的目标、要求和验证标准,并做好技术准备。 ②数据仓库建模 数据仓库建模是数据仓库建设的关键部分,它采用三个层次的细化数据模型:概念、逻辑和物理模型。概念模型设计是将数据仓库的要求分解为业务概念,并组织与业务概念相关的数据以产生一个主题域的过程。逻辑模型设计是在概念模型的基础上描述主题领域的逻辑实现,并将其存储在元数据中的过程。物理模型设计是数据仓库中逻辑模型实现的模型,定义了数据存储结构、索引策略、存储分配、存储位置等。 ③数据仓库部署 数据仓库部署工作在完成数据仓库建模工作后主要包括三个方面:1)数据加载:执行接口程序,将业务系统数据加载到数据仓库中;2)用户审批:用户可以使用相关的系统性能测试效果来反映最新的业务动态;3)桌面准备:所需的桌面操作设备,包括硬件、网络连接等。网络连接等 ④ 数据仓库的运行和维护。 一旦完成数据仓库的部署,数据仓库的建设就基本结束了,但后期可能需要根据新的用户需求、用户体验和反馈来改进和维护数据仓库。此外,在调试和完善数据仓库功能的基础上,将对数据仓库的日常数据加载进行管理,包括更新现有数据和删除垃圾数据等。
2.2.3数据分析技术
作为大数据分析的理论核心,数据挖掘(DM)是指从大量不完整、嘈杂、模糊和随机的数据中提取或发现隐藏的、先前未知的和潜在有用的数据或信息的过程,以揭示数据之间的关系、模式和趋势。 数据挖掘是一种探索海量数据中可能模式的技术。虽然数据挖掘过程在不同的应用领域有所不同,但一般认为它包括四个步骤:确定商业案例、理解和准备数据、提取数据和分析结果,如图所示。 2)问题定义和商业案例识别 数据挖掘解决方案的第一步是深入了解商业案例,将其转化为一个明确的数据挖掘问题,并初步制定分析流程。 (2)数据理解和准备 数据理解和准备是指根据数据的内涵和特点进行初步收集,并对数据进行必要的加工、整理和评估,以保证数据挖掘建模是在高质量的数据上进行的。数据质量是数据挖掘建模的一个关键因素。数据准备包括处理缺失数据、诊断异常数据、转换数据和选择变量。 (3) 数据挖掘 对于经过清理和转换的数据集,根据数据挖掘的商业案例以及数据的特点和属性,选择合适的挖掘结构和算法,设置挖掘模型的参数,从数据中提取隐含的和潜在的有用规律和数据。 (4) 结果分析 对提取的结果进行解释和评估,主要是为了评估提取的知识模型的可靠性、有效性和通用性。此外,提取结果需要转化为用户可理解的信息,而可视化技术通常被用作分析方法。数据挖掘中使用的方法结合了数据库、人工智能、统计、模式识别和数据分析的研究成果。目前主要的数据挖掘方法有决策树方法、神经网络方法、遗传算法、模糊集方法、粗糙集方法等。
2.3高速铁路接触网全寿命周期管理概述
生命周期成本(LCC)是指一个系统或设备在其整个生命周期内,从购置、维护到支付正常运行的所有费用的直接、间接和其他相关成本的总和,即产品(设备)在其生命周期内的设计、研发、制造、运行、维护和安全的直接、间接和其他相关成本的总和。 LCC管理包括对一个设备或系统的整个生命周期的管理,如设计、选择、采购、操作、维护、更换和退役。电力系统的生命周期资产管理(LCAM)起源于生命周期成本管理,是对生命周期成本管理概念的演变和丰富。它是LCC管理概念的发展和延伸。高速铁路资产的生命周期管理是资产管理中安全管理(“S M”)、效率管理(“EM”)和生命周期成本管理(“LCC”)的结合。资产管理(“AM”)是高速铁路互联网络的技术和市场特点的有机结合,总结了电网资产管理的实践,适应了新的发展要求,发展了新的概念和方法论。 资产生命周期管理本质上是将系统工程理论应用于资产管理。LCC是一种科学方法,它以资产为研究对象,从系统整体目标的角度考虑资产的规划、设计、购置、建设、运营、维护、升级和退役,在尊重安全和效率的条件下,以资产的整个生命周期的最佳成本为目标,实现系统的优化。 LCC的概念起源于瑞典的铁路系统,并在1965年被美国国防部在整个军队中采用。在电力系统中,瑞典电力公司在20世纪80年代将LCC管理与基础设施项目的可靠性研究相结合,包括发电厂、输变电项目、变电站和断路器等单个设备;美国电力研究所近年来也将LCC应用于核电站、大型变压器和低压输电网;在加拿大和欧洲,LCC概念已经与绿色能源和可持续发展联系起来。1996年,IEC发布了国际标准IEC 60300-3-3,2004年7月发布了修订版。 1999年6月,美国总统签署了一项行政命令,要求各州政府对设备和设计项目要求提供LCC报告。2004年,国际大电网会议(CIGRE)提议使用生命周期成本来管理设备,并呼吁制造商为其产品提供生命周期成本报告。在中国,LCC管理也被用于军事武器采购和工业设备管理,1998年发布了军事标准GJ}Bz205I7《武器装备寿命周期成本估算》,并将LCC管理要求纳入待定的设备管理条例(由国务院发布)。 在电力领域,上海电力公司于2003年率先开展了LCC的初步研究和实施研究,近年来逐步将LCC应用于设备采购的评估和决策,并在规划和设计方案中开展LCC评估研究和试点。随着电力企业资产规模的逐步扩大,对资产经济性和可靠性的要求越来越高,以及电力企业物资管理标准化、信息化的全面推行,LCC的外部环境和内部条件已基本成熟,2008年,国家电网公司在前期调研、试点和总结经验的基础上,提出在国家电网系统全面开展LCC。2008年,国家电网公司在初步研究、试点项目和经验总结的基础上,提出在国家电网系统实施全面的LOAM。目前,各级电力公司都在全面实施LOAM。
2.4高速铁路接触网全寿命周期管理理论
2.4.1系统理论
在高铁项目建设中,工期长、单位多,是一个有目共睹的大工程。它的运作涉及复杂的、交织在一起的相互作用。在建设初期,管理者对项目高速铁路网的全寿命周期管理还缺乏了解,不够重视,往往使项目实施过程中出现各种问题。近年来,随着对高速铁路连接网生命周期管理理论的深入研究和实际设计经验的积累,接口管理引起了项目管理者的重视,人们引入了系统论的思想,考虑项目中多个子系统的相互作用和问题,并运用系统论来解决。
系统思维的内涵:所谓系统,是指由两个或两个以上独立的、相互关联的实体(或要素)组成的有机组合,共同实现同一综合体的目的。要使一个整体成为一个系统,一般必须满足以下三个条件:第一,每个元素的行为都会影响整体的行为;第二,每个元素的行为和它在整体中的作用是相互依存的,任何元素都不能单独影响整体;第三,无论这些元素如何进一步分解,它们的分解部分也会影响整体,但它们都不影响整体。第三,无论这些元素被分解到什么程度,它们被分解的部分也会影响到整体,但没有一个部分能影响到整个系统。如果系统很大,可以分为许多子系统。与原始系统相比,子系统的变量更少,结构更简单,更容易分析。子系统是相互联系和不可分割的。我们遵循系统论的观点,认为任何系统都是一个有机的整体,它不是机械的组合或仅仅是部分的增加,系统的整体功能具有各元素孤立存在时不具备的性质。为此,我们必须从每个高速列车建设项目的总体目标和各子系统的发展、运行、变化规律出发,对整个系统进行整体分析和统筹管理。从系统的内涵中可以得出两个结论:第一,系统的每个部分都有自己的特点,当它从系统中分解出来时,其特点就会消失;第二,每个系统都有一定的特点,但系统的任何部分都不可能独立拥有这些特点。当一个系统被瓦解时,其属性会被削弱。为此,必须把系统作为一个整体来对待,而不是任意分割,而是以系统的方式来处理。 该项目作为一个系统,具有以下特点。
①项目日制度不仅有目的,而且有共同目的。
②项目各子系统之间的功能互补性。
③ 项目系统对环境是开放的。
因此,高速铁路网络的整个生命周期的管理需要发展和澄清对项目总体目标和所有相关方的利益的共同理解。同时,在管理高速铁路网的整个生命周期中,必须关注项目各子系统之间的互动,使各方不要只关注自己的内部组织而忽视其他各方的需求。公共利益被用来激励各方之间的合作和支持。随着项目建设进程的推进,高铁网络全寿命周期的管理也将涉及项目环境的变化和持续改进。高铁网络的全生命周期管理是一个连续的过程,因此,了解高铁网络全生命周期管理的连续性,并确保这一过程的顺利和完整,是消除和减少接口两边的系统性问题的最重要的一点。高铁项目管理者需要将系统理论思维融入到项目管理中。

2.4.2协同理论
协同效应,也被称为协同效应,是一门新兴学科,研究不同事物的共同特征及其协同机制。它是一门综合学科,在过去十年中得到了广泛的发展和应用。它侧重于系统之间的相似性,因为它们从无序走向有序。哈肯是协同效应的创始人,他把这门学科称为 “协同效应”,因为一方面,我们研究许多子系统的相互作用,在宏观上产生结构和功能;另一方面,它是许多不同学科的合作,寻找自组织系统的一般原则。协同主义假定,千差万别的系统,尽管有不同的特点,但在整个环境中,相互之间有一种相互影响但合作的关系。这包括正常的社会现象,如不同实体之间的互动和合作,部门间关系的协调,企业的竞争作用,以及系统中的相互干扰和制约。协同效应指出,大量的子系统构成了一个系统,在一定条件下,当子系统相互作用、相互合作时,这种系统的探索大致可以认为是对从自然界到人类社会的不同系统演变的研究,并探索支配其变化的共同规律。应用协同方法可以通过类比将现有的研究成果扩展到其他学科,为探索未知领域提供有效手段,也可以用来识别系统变化的驱动因素,从而利用系统中各子系统之间的协同作用。近年来,管理学领域也将理论思想应用于项目建设管理,以不同实体和组织之间的协作为基础,明确他们之间的相互激励和制约关系,并在项目建设初期制定界面管理计划时加以考虑,以更科学合理的方式制定界面管理合同和相关文件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值