题意:给你一串字符串,然后给m个操作,每次删除[l,r]区间内所有的字符c。问最后剩下的字符串是什么样子
思路:用一个线段树去维护这个字符串,每一个结点用一个类似于计数排序的数组去存储该区间内每一个字符的个数,然后动态维护这个线段树,最后遍历这个线段树(线段树的一些操作见线段树(转))
AC代码:
#include<iostream>
#include<cstdio>
#define N 200005
using namespace std;
char a[N];
int sum[N*4][62];
bool add[N*4][62];
int get(char c)
{
if(c>='a'&&c<='z')
return c-'a';
if(c>='A'&&c<='Z')
return c-'A'+26;
if(c>='0'&&c<='9')
return c-'0'+52;
}
int put(int num)
{
if(num>=0&&num<26)
return num+'a';
if(num>=26&&num<52)
return num+'A'-26;
if(num>=52)
return num+'0'-52;
}
void PushUp(int rt) //更新结点信息
{
for(int i=0;i<62;i++)
sum[rt][i]=sum[rt<<1][i]+sum[rt<<1|1][i];
}
void build(int l,int r,int rt)
{
if(l==r)
{
sum[rt][get(a[l])]++;
return ;
}
int m=(l+r)>>1;
build(l,m,rt<<1);
build(m+1,r,rt<<1|1);
PushUp(rt);
}
void push_down(int rt) //下推标记
{
for(int i=0;i<62;i++)
if(add[rt][i])
{
sum[rt<<1][i]=0;
sum[rt<<1|1][i]=0;
add[rt<<1][i]=add[rt<<1|1][i]=add[rt][i];
add[rt][i]=0;
}
}
int find(int L,int R,int rt,int k)
{
if(L==R)
return L;
int mid=(L+R)>>1;
int lsum=0;
push_down(rt); //要把删除的数去掉后再计算左边数量
for(int i=0;i<62;i++)
lsum+=sum[rt<<1][i];
if(lsum>=k)
return find(L,mid,rt<<1,k);
else
return find(mid+1,R,rt<<1|1,k-lsum);
PushUp(rt); //下推标记后,就把本结点值更新为正确的值
}
void Update(int L,int R,int l,int r,int rt,int k) //[L,R]为操作区间,[l,r]为结点区间,rt为当前编号,k为要删除的数
{
if(L<=l&&r<=R) //操作区间覆盖本区间
{
sum[rt][k]=0;
add[rt][k]=1;
return ;
}
int m=(l+r)>>1;
push_down(rt);
if(L<=m)
Update(L,R,l,m,rt<<1,k);
if(R>m)
Update(L,R,m+1,r,rt<<1|1,k);
PushUp(rt);
}
void traverse(int L,int R,int rt)
{
if(L==R)
{
for(int i=0;i<62;i++)
if(sum[rt][i]!=0)
printf("%c",put(i));
return ;
}
int mid=(L+R)>>1;
push_down(rt); //要将标记一直推到叶子,因为单个数据在叶子结点
traverse(L,mid,rt<<1);
traverse(mid+1,R,rt<<1|1);
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
scanf("%s",a+1);
build(1,n,1);
while(m--)
{
int l,r;
char c;
scanf("%d %d %c",&l,&r,&c);
l=find(1,n,1,l);
r=find(1,n,1,r);
Update(l,r,1,n,1,get(c));
}
traverse(1,n,1);
printf("\n");
return 0;
}