高斯金字塔
向下采样(缩小)向着塔尖进行
- 将图像与高斯内核进行卷积
- 将所有的偶数行和列去除
向上采样(放大)向着塔底进行
- 将图像在每个方向扩大原来的两倍,新增的行和列用0填充
- 再将放大后的图像与高斯内核进行卷积得到近似值
import cv2#opencv 的读取格式是BGR
import matplotlib.pyplot as plt
import numpy as np
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
#高斯金字塔 向下采样(变小)向上采样(变大)
img=cv2.imread('test.jpg')
cv_show('test',img)
print(img.shape)
up=cv2.pyrUp(img)
cv_show('test',up)
print(up.shape)
down=cv2.pyrDown(img)
cv_show('test',down)
print(down.shape)
shape结果
(680, 440, 3)
(1360, 880, 3)
(340, 220, 3)
拉普拉斯金字塔
R=G-PyrUp(PyrDown(G))
常做多层迭代使用,这里展示一层迭代
#拉普拉斯金字塔 L=G-PyrUp(PyrDown(G))
img1=cv2.imread('test.jpg')
down_up=cv2.pyrUp(cv2.pyrDown(img1))
res=img1-down_up
cv_show('res',np.hstack((img,res)))

本文介绍了高斯金字塔的构建过程,包括图像的向下采样(缩小)和向上采样(放大)。通过`cv2.pyrUp`和`cv2.pyrDown`函数展示了OpenCV中实现这一过程的方法,并给出了一个实例。同时,探讨了拉普拉斯金字塔的概念,通过一层迭代展示了拉普拉斯金字塔的构建,即原始图像减去上采样后再下采样的结果。

901

被折叠的 条评论
为什么被折叠?



