以下是《21世纪高等院校教材•电磁学》第一章“真空中固定电荷的电场”的全部内容 :
1.1电荷
- 自然界中存在两种电荷,即正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
- 电荷的多少叫电荷量,简称电量,单位是库仑,简称库,符号是C 。
1.2库仑定律和叠加原理
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。表达式为 F = k q 1 q 2 r 2 F=k\frac{q_{1}q_{2}}{r^{2}} F=kr2q1q2,其中 k k k为静电力常量, k = 9.0 × 1 0 9 N ⋅ m 2 / C 2 k = 9.0\times10^{9}\ N\cdot m^{2}/C^{2} k=9.0×109 N⋅m2/C2 。
- 电量的单位:库仑的定义是根据安培定律和力的单位牛顿导出的,1库仑是指1安培的电流在1秒内通过某一截面的电荷量。
- 叠加原理:多个点电荷对某一点电荷的作用力,等于各个点电荷单独存在时对该点电荷作用力的矢量和。
- 对库仑定律的进一步讨论:库仑定律只适用于真空中的静止点电荷,当电荷不是点电荷时,需将带电体分割成许多小的电荷元,再用叠加原理计算作用力。
1.3物质的电结构
- 电荷的量子化:电荷的量值是不连续的,它只能是元电荷 e e e的整数倍, e = 1.60 × 1 0 − 19 C e = 1.60\times10^{-19}\ C e=1.60×10−19 C 。
- 原子结构:原子由带正电的原子核和带负电的电子组成,原子核由质子和中子组成,质子带正电,中子不带电,电子带负电。
- 导体、绝缘体和半导体:导体中存在大量的自由电荷,能够导电;绝缘体中的电荷几乎都被束缚在原子或分子的范围内,不能自由移动,几乎不导电;半导体的导电性能介于导体和绝缘体之间,其导电性能受温度、光照等因素的影响较大。
- 电荷守恒定律:在一个与外界没有电荷交换的系统内,正、负电荷的代数和在任何物理过程中始终保持不变。
- 使物质结合的力:物质的结合力包括化学键、范德华力等,化学键有离子键、共价键、金属键等类型,这些力在不同程度上与电荷的相互作用有关。
1.4电场 电场强度
- 电场:电荷周围存在一种特殊的物质,叫做电场,电荷间的相互作用是通过电场来实现的。
- 电场强度:放入电场中某点的检验电荷所受的电场力 F F F跟它的电荷量 q q q的比值,叫做该点的电场强度,简称场强,定义式为 E = F q E=\frac{F}{q} E=qF,单位是牛/库,符号是N/C 。电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
- 点电荷的场强:真空中点电荷 Q Q Q在距离它为 r r r处产生的电场强度大小为 E = k Q r 2 E=k\frac{Q}{r^{2}} E=kr2Q,方向由点电荷 Q Q Q指向该点。
- 电场强度叠加原理:多个点电荷在某点产生的电场强度,等于各个点电荷单独在该点产生的电场强度的矢量和。
1.5连续分布的电荷所激发的电场
- 对于连续分布的电荷,可将其分割成许多电荷元,每个电荷元可视为点电荷,然后根据电场强度叠加原理,通过积分计算出其产生的电场强度。例如,对于线电荷分布、面电荷分布和体电荷分布,分别有相应的计算公式来计算电场强度。
1.6静电场的势
- 静电力所做的功与路径无关:试验电荷在静电场中移动时,静电力对它所做的功只与试验电荷的电荷量以及起点和终点的位置有关,而与路径无关。
- 电势能和电势:电荷在电场中具有电势能,电势能的变化量等于静电力对电荷所做的功。电场中某点的电势,等于单位正电荷在该点具有的电势能,定义式为 U = W q U=\frac{W}{q} U=qW,单位是伏特,简称伏,符号是V 。
- 电势的计算:可根据电势的定义式,通过计算电荷在电场中从某点移动到无穷远处静电力所做的功来计算该点的电势;也可根据已知的电场分布,利用电场强度与电势的积分关系来计算电势。
- 场强与电势的微分关系:电场强度等于电势的负梯度,即 E = − ∇ U E = -\nabla U E=−∇U,在一维情况下, E = − d U d x E = -\frac{dU}{dx} E=−dxdU,它表明电场强度的方向指向电势降低最快的方向,且电场强度的大小等于电势沿该方向的变化率。
1.7电场线和等势面
- 电场线:电场线是为了形象地描述电场而引入的假想曲线,曲线上每一点的切线方向表示该点的电场强度方向,电场线的疏密程度表示电场强度的大小,电场线越密的地方,电场强度越大。
- 等势面:电场中电势相等的点构成的面叫做等势面。等势面与电场线处处垂直,沿着等势面移动电荷,静电力不做功。
1.8高斯定理
- 电通量:通过电场中某一给定面的电场线的条数,叫做通过该面的电通量,用 Φ e \varPhi_{e} Φe表示。对于均匀电场,通过垂直于电场方向的平面 S S S的电通量为 Φ e = E S \varPhi_{e}=ES Φe=ES;对于非均匀电场和任意曲面,电通量的计算需采用积分形式 Φ e = ∬ S E ⋅ d S \varPhi_{e}=\iint_{S}E\cdot dS Φe=∬SE⋅dS 。
- 高斯定理:在真空中,通过任一闭合曲面的电通量,等于该曲面所包围的所有电荷的代数和除以 ϵ 0 \epsilon_{0} ϵ0,即 Φ e = ∬ S E ⋅ d S = 1 ϵ 0 ∑ i q i \varPhi_{e}=\iint_{S}E\cdot dS=\frac{1}{\epsilon_{0}}\sum_{i}q_{i} Φe=∬SE⋅dS=ϵ01∑iqi,其中 ϵ 0 \epsilon_{0} ϵ0是真空介电常数, ϵ 0 = 8.85 × 1 0 − 12 C 2 / N ⋅ m 2 \epsilon_{0}=8.85\times10^{-12}\ C^{2}/N\cdot m^{2} ϵ0=8.85×10−12 C2/N⋅m2 。
- 电场线的性质:电场线起自正电荷或无穷远处,终止于负电荷或无穷远处;电场线不闭合,不相交。
1.9高斯定理应用举例
- 均匀带电球的电场:对于半径为 R R R、电荷量为 Q Q Q的均匀带电球体,其外部电场强度分布与点电荷的电场强度分布相同,即 E = k Q r 2 E=k\frac{Q}{r^{2}} E=kr2Q( r > R r\gt R r>R);在球体内部,电场强度与 r r r成正比, E = k Q r R 3 E=\frac{kQr}{R^{3}} E=R3kQr( r < R r\lt R r<R)。
- “无限大”均匀带电平面的电场:“无限大”均匀带电平面所产生的电场强度大小为 E = σ 2 ϵ 0 E=\frac{\sigma}{2\epsilon_{0}} E=2ϵ0σ,其中 σ \sigma σ是带电平面的电荷面密度,电场强度的方向垂直于带电平面,且在平面两侧的电场强度方向相反。
1.10电偶极子激发的电场
- 由两个等量异种点电荷 + q +q +q和 − q -q −q组成的系统,当它们之间的距离 l l l远小于所讨论的场点到它们的距离 r r r时,这个系统称为电偶极子。电偶极子在空间中某点产生的电场强度,可根据点电荷的电场强度公式和叠加原理计算得出,其电场强度大小和方向与电偶极子的电偶极矩 p = q l p = ql p=ql以及场点的位置有关。
1.11密立根油滴实验与分数电荷
- 密立根油滴实验通过测量带电油滴在电场和重力场中的平衡状态,精确地测定了电子的电荷量,验证了电荷的量子化特性,并且没有发现存在分数电荷的证据。
1.12小结和补充例题
- 小结:对本章的主要内容进行了总结,包括电荷、库仑定律、电场强度、电势、高斯定理等概念和规律,强调了它们之间的相互关系以及在解决静电场问题中的应用。
- 补充例题:通过一些具体的例题,进一步巩固和深化了对本章知识点的理解和应用,包括电场强度的计算、电势的计算、高斯定理的应用等方面的例题。