变压器等效电路图
- 概念:变压器的等效电路是一种用于描述变压器电气性能的电路模型,它将变压器抽象化为一个由电阻、电感、电容等基本元件组成的电路,以便于分析变压器的输入输出电压、电流和功率关系,以及变压器的性能参数和运行状态.
- 原理:基于变压器的电磁感应原理,通过对变压器一次侧和二次侧的电压、电流以及磁通等物理量之间的关系进行分析和推导,将变压器的铁芯和线圈用电阻和感抗等电路元件来代替,从而建立起等效电路模型.
- 建立过程 :
- 绕组归算:把二次绕组的匝数变换成一次绕组的匝数,或将一次绕组的匝数变换成二次绕组的匝数来运算,归算前后磁动势平衡关系和各种能量关系保持不变。包括电动势归算 E 2 ′ = k E 2 E_2' = kE_2 E2′=kE2、电流归算 I 2 ′ = I 2 k I_2' = \frac{I_2}{k} I2′=kI2 、阻抗归算 X 2 ′ = k 2 X 2 X_2' = k^2X_2 X2′=k2X2等。
- 确定各元件参数:一次绕组的电阻 R 1 R_1 R1 和漏电抗 X 1 X_1 X1 ,二次绕组归算到一次侧后的电阻 R 2 ′ R_2' R2′ 和漏电抗 X 2 ′ X_2' X2′ ,以及励磁电阻 R m R_m Rm 和励磁电抗 X m X_m Xm 等参数。
- 构建等效电路:根据上述参数和归算后的电压、电流关系,构建出不同形式的等效电路,如 T T T 型等效电路、 Γ \Gamma Γ 形等效电路等 。
- 分类 :
- T T T 型等效电路:能正确反映变压器内部的电磁关系,但它是一种复联电路,进行复数运算比较繁琐,常用于对变压器性能进行较为精确的分析和计算。
- Γ \Gamma Γ 形等效电路:相对 T T T 型等效电路更为简化,在一些近似分析中使用。
- 简化等效电路:忽略励磁支路或进行进一步的近似处理,得到的更为简单的等效电路,可用于工程上的快速估算和定性分析,虽然精度相对较低,但计算简便,能满足大多数工程实际要求 。
- 用途 :
- 分析电压、电流关系:方便地计算变压器原、副边电压、电流之间的大小和向量关系,以及在不同负载条件下的变化规律。
- 计算功率和损耗:用于计算变压器的输入功率、输出功率、铜损、铁损等,从而评估变压器的效率和性能。
- 设计变压器:帮助工程师根据给定的性能指标和技术要求,合理地选择变压器的绕组匝数、线径、铁芯尺寸等参数,以优化变压器的设计。
- 故障诊断:通过对等效电路中各元件的电流、电压等参数的分析,判断变压器是否存在短路、断路、绝缘故障等问题,为故障排查和修复提供依据。
- 相关计算公式 :
- 电压关系: U 1 U 2 = N 1 N 2 = k \frac{U_1}{U_2}=\frac{N_1}{N_2}=k U2U1=N2N1=k, U 1 = − E 1 + I 1 ( R 1 + j X 1 ) U_1 = -E_1 + I_1(R_1+jX_1) U1=−E1+I1(R1+jX1), U 2 = E 2 − I 2 ( R 2 + j X 2 ) U_2 = E_2 - I_2(R_2+jX_2) U2=E2−I2(R2+jX2)
- 电流关系: I 1 + I 2 = I m ≈ I 0 I_1 + I_2 = I_m\approx I_0 I1+I2=Im≈I0, I 2 ′ = I 2 k I_2' = \frac{I_2}{k} I2′=kI2
- 阻抗关系: Z 2 ′ = k 2 Z 2 Z_2' = k^2Z_2 Z2′=k2Z2, R 2 ′ = k 2 R 2 R_2' = k^2R_2 R2′=k2R2, X 2 ′ = k 2 X 2 X_2' = k^2X_2 X2′=k2X2, Z k = R k + j X k Z_k=R_k+jX_k Zk=Rk+jXk , R k = R 1 + R 2 R_k=R_1+R_2 Rk=R1+R2 , X k = X 1 + X 2 X_k=X_1+X_2 Xk=X1+X2
- 功率关系: P 1 = U 1 I 1 cos φ 1 P_1 = U_1I_1\cos\varphi_1 P1=U1I1cosφ1, P 2 = U 2 I 2 cos φ 2 P_2 = U_2I_2\cos\varphi_2 P2=U2I2cosφ2, P c u 1 = I 1 2 R 1 P_{cu1}=I_1^2R_1 Pcu1=I12R1, P c u 2 = I 2 2 R 2 P_{cu2}=I_2^2R_2 Pcu2=I22R2, P F e = I m 2 R m P_{Fe}=I_m^2R_m PFe=Im2Rm
- 实例:已知一台单相变压器,额定容量
S
N
=
100
k
V
A
S_N = 100kVA
SN=100kVA,额定电压
U
1
N
/
U
2
N
=
6000
V
/
400
V
U_{1N}/U_{2N}=6000V/400V
U1N/U2N=6000V/400V,短路阻抗
Z
k
=
30
+
j
80
Ω
Z_k = 30 + j80\Omega
Zk=30+j80Ω ,负载阻抗
Z
L
=
0.8
+
j
0.6
Ω
Z_L = 0.8 + j0.6\Omega
ZL=0.8+j0.6Ω 。求变压器一次侧电流
I
1
I_1
I1 、二次侧电流
I
2
I_2
I2 和输出电压
U
2
U_2
U2 。
- 首先计算变比 k = U 1 N U 2 N = 6000 400 = 15 k=\frac{U_{1N}}{U_{2N}}=\frac{6000}{400}=15 k=U2NU1N=4006000=15
- 将负载阻抗折算到一次侧: Z L ′ = k 2 Z L = 1 5 2 × ( 0.8 + j 0.6 ) = 180 + j 135 Ω Z_L' = k^2Z_L = 15^2\times(0.8 + j0.6)=180 + j135\Omega ZL′=k2ZL=152×(0.8+j0.6)=180+j135Ω
- 计算一次侧电流: I 1 = U 1 N ∣ Z k + Z L ′ ∣ = 6000 ∣ 30 + j 80 + 180 + j 135 ∣ = 6000 ∣ 210 + j 215 ∣ ≈ 16.5 A I_1=\frac{U_{1N}}{|Z_k+Z_L'|}=\frac{6000}{|30 + j80+180 + j135|}=\frac{6000}{|210 + j215|}\approx 16.5A I1=∣Zk+ZL′∣U1N=∣30+j80+180+j135∣6000=∣210+j215∣6000≈16.5A
- 计算二次侧电流: I 2 = k I 1 = 15 × 16.5 = 247.5 A I_2 = kI_1 = 15\times16.5 = 247.5A I2=kI1=15×16.5=247.5A
- 计算输出电压: U 2 = I 2 ∣ Z L ∣ = 247.5 × ∣ 0.8 + j 0.6 ∣ ≈ 206.2 V U_2 = I_2|Z_L| = 247.5\times|0.8 + j0.6|\approx 206.2V U2=I2∣ZL∣=247.5×∣0.8+j0.6∣≈206.2V
变压器相量图
- 概念:变压器的相量图是一种用相量表示变压器一次侧和二次侧电压、电流等物理量之间关系的图形,它以相量的形式直观地展示了变压器在不同运行状态下各物理量的大小和相位关系.
- 原理:根据变压器的基本方程式和电磁感应原理,将变压器一次侧和二次侧的电压、电流等物理量用复数形式表示为相量,然后按照它们之间的关系在复平面上绘制出相应的相量图,从而直观地反映出这些物理量的大小、相位以及它们之间的相互关系.
- 绘制过程 :
- 确定参考相量:通常选择一次侧电压相量 U ˙ 1 \dot{U}_1 U˙1 作为参考相量,将其画在水平方向上。
- 绘制一次侧电流相量:根据一次侧电压 U ˙ 1 \dot{U}_1 U˙1 和一次侧绕组的阻抗 Z 1 = R 1 + j X 1 Z_1 = R_1 + jX_1 Z1=R1+jX1 ,计算一次侧电流相量 I ˙ 1 = U ˙ 1 Z 1 \dot{I}_1=\frac{\dot{U}_1}{Z_1} I˙1=Z1U˙1 ,并按照其相位关系绘制在相量图上。
- 绘制励磁电流相量:励磁电流相量 I ˙ m \dot{I}_m I˙m 与一次侧电流相量 I ˙ 1 \dot{I}_1 I˙1 之间存在一定的相位差,根据变压器的空载特性和励磁阻抗 Z m = R m + j X m Z_m = R_m + jX_m Zm=Rm+jXm 计算出 I ˙ m \dot{I}_m I˙m ,并绘制在相量图上。
- 绘制二次侧电流相量:由磁动势平衡方程 I ˙ 1 N 1 + I ˙ 2 N 2 = I ˙ m N 1 \dot{I}_1N_1+\dot{I}_2N_2=\dot{I}_mN_1 I˙1N1+I˙2N2=I˙mN1 ,可得 I ˙ 2 = I ˙ m N 1 − I ˙ 1 N 1 N 2 \dot{I}_2=\frac{\dot{I}_mN_1-\dot{I}_1N_1}{N_2} I˙2=N2I˙mN1−I˙1N1 ,计算出二次侧电流相量 I ˙ 2 \dot{I}_2 I˙2 ,并根据其与一次侧电流相量 I ˙ 1 \dot{I}_1 I˙1 的相位关系绘制在相量图上。
- 绘制二次侧电压相量:根据二次侧电动势 E ˙ 2 \dot{E}_2 E˙2 和二次侧绕组的阻抗 Z 2 = R 2 + j X 2 Z_2 = R_2 + jX_2 Z2=R2+jX2 ,以及二次侧电流相量 I ˙ 2 \dot{I}_2 I˙2 ,计算二次侧电压相量 U ˙ 2 = E ˙ 2 − I ˙ 2 Z 2 \dot{U}_2=\dot{E}_2-\dot{I}_2Z_2 U˙2=E˙2−I˙2Z2 ,并绘制在相量图上。
- 分类:
- 空载相量图:变压器二次侧开路时的相量图,此时二次侧电流 I ˙ 2 = 0 \dot{I}_2 = 0 I˙2=0 ,主要用于分析变压器的空载特性和励磁电流等。
- 负载相量图:变压器二次侧接入负载时的相量图,可根据负载的性质(如电阻性、电感性、电容性)和大小的不同,绘制出不同情况下的负载相量图,用于分析变压器在负载运行时的电压调整率、功率因数等性能指标。
- 用途:
- 直观分析电压、电流关系:通过相量图可以直观地看出变压器一次侧和二次侧电压、电流之间的大小和相位关系,以及它们在不同运行状态下的变化情况,有助于理解变压器的工作原理和性能特点.
- 辅助计算和设计:在进行变压器的计算和设计时,相量图可以作为一种辅助工具,帮助工程师更准确地分析和计算变压器的各项参数,如电压调整率、短路阻抗等,从而优化变压器的设计方案。
- 故障分析:当变压器出现故障时,相量图可以帮助技术人员快速判断故障的类型和位置。例如,如果相量图中显示一次侧电流和二次侧电流的相位关系异常,可能提示绕组存在匝间短路等故障。
- 相关计算公式:与等效电路图中的计算公式基本相同,如 U ˙ 1 = − E ˙ 1 + I ˙ 1 Z 1 \dot{U}_1 = -\dot{E}_1 + \dot{I}_1Z_1 U˙1=−E˙1+I˙1Z1, U ˙ 2 = E ˙ 2 − I ˙ 2 Z 2 \dot{U}_2 = \dot{E}_2 - \dot{I}_2Z_2 U˙2=E˙2−I˙2Z2, I ˙ 1 N 1 + I ˙ 2 N 2 = I ˙ m N 1 \dot{I}_1N_1+\dot{I}_2N_2=\dot{I}_mN_1 I˙1N1+I˙2N2=I˙mN1 等,这些公式是绘制相量图的基础,通过计算各相量的大小和相位来确定相量图中各相量的位置和方向.
- 实例:一台单相变压器,已知一次侧电压
U
1
=
220
V
U_1 = 220V
U1=220V,一次侧绕组电阻
R
1
=
0.5
Ω
R_1 = 0.5\Omega
R1=0.5Ω,漏电抗
X
1
=
2
Ω
X_1 = 2\Omega
X1=2Ω,二次侧绕组电阻
R
2
=
0.05
Ω
R_2 = 0.05\Omega
R2=0.05Ω,漏电抗
X
2
=
0.2
Ω
X_2 = 0.2\Omega
X2=0.2Ω,变比
k
=
10
k = 10
k=10,负载阻抗
Z
L
=
5
+
j
4
Ω
Z_L = 5 + j4\Omega
ZL=5+j4Ω 。绘制该变压器的负载相量图,并求出一次侧功率因数。
- 首先计算一次侧电流:
- 二次侧阻抗折算到一次侧: Z 2 ′ = k 2 Z 2 = 1 0 2 × ( 0.05 + j 0.2 ) = 5 + j 20 Ω Z_2' = k^2Z_2 = 10^2\times(0.05 + j0.2)=5 + j20\Omega Z2′=k2Z2=102×(0.05+j0.2)=5+j20Ω
- 负载阻抗折算到一次侧: Z L ′ = k 2 Z L = 1 0 2 × ( 5 + j 4 ) = 500 + j 400 Ω Z_L' = k^2Z_L = 10^2\times(5 + j4)=500 + j400\Omega ZL′=k2ZL=102×(5+j4)=500+j400Ω
- 一次侧总阻抗: Z 1 + Z 2 ′ + Z L ′ = ( 0.5 + 5 + 500 ) + j ( 2 + 20 + 400 ) = 505.5 + j 422 Ω Z_1 + Z_2' + Z_L'=(0.5 + 5 + 500)+j(2 + 20 + 400)=505.5 + j422\Omega Z1+Z2′+ZL′=(0.5+5+500)+j(2+20+400)=505.5+j422Ω
- 一次侧电流: I ˙ 1 = U ˙ 1 Z 1 + Z 2 ′ + Z L ′ = 220 ∠ 0 ∘ 505.5 + j 422 = 220 ∠ 0 ∘ 659.5 ∠ 39. 8 ∘ ≈ 0.334 ∠ − 39. 8 ∘ A \dot{I}_1=\frac{\dot{U}_1}{Z_1 + Z_2' + Z_L'}=\frac{220\angle0^{\circ}}{505.5 + j422}=\frac{220\angle0^{\circ}}{659.5\angle39.8^{\circ}}\approx0.334\angle-39.8^{\circ}A I˙1=Z1+Z2′+ZL′U˙1=505.5+j422220∠0∘=659.5∠39.8∘220∠0∘≈0.334∠−39.8∘A
- 然后计算二次侧电流: I ˙ 2 = k I ˙ 1 = 10 × 0.334 ∠ − 39. 8 ∘ = 3.34 ∠ − 39. 8 ∘ A \dot{I}_2 = k\dot{I}_1 = 10\times0.334\angle-39.8^{\circ}=3.34\angle-39.8^{\circ}A I˙2=kI˙1=10×0.334∠−39.8∘=3.34∠−39.8∘A
- 接着计算一次侧电压降:
- 一次侧绕组电阻压降: U ˙ R 1 = I ˙ 1 R 1 = 0.334 ∠ − 39. 8 ∘ × 0.5 = 0.167 ∠ − 39. 8 ∘ V \dot{U}_{R1}=\dot{I}_1R_1=0.334\angle-39.8^{\circ}\times0.5=0.167\angle-39.8^{\circ}V U˙R1=I˙1R1=0.334∠−39.8∘×0.5=0.167∠−39.8∘V
- 一次侧漏电抗压降: U ˙ X 1 = I ˙ 1 X 1 = 0.334 ∠ − 39. 8 ∘ × 2 = 0.668 ∠ 50. 2 ∘ V \dot{U}_{X1}=\dot{I}_1X_1=0.334\angle-39.8^{\circ}\times2=0.668\angle50.2^{\circ}V U˙X1=I˙1X1=0.334∠−39.8∘×2=0.668∠50.2∘V
- 再计算二次侧电压:
- 二次侧电动势: E ˙ 2 = U ˙ 2 + I ˙ 2 Z 2 = ( 5 + j 4 ) × 3.34 ∠ − 39. 8 ∘ = 16.7 ∠ − 39. 8 ∘ + 13.36 ∠ 50. 2 ∘ = 21.4 ∠ 5. 2 ∘ V \dot{E}_2=\dot{U}_2+\dot{I}_2Z_2=(5 + j4)\times3.34\angle-39.8^{\circ}=16.7\angle-39.8^{\circ}+13.36\angle50.2^{\circ}=21.4\angle5.2^{\circ}V E˙2=U˙2+I˙2Z2=(5+j4)×3.34∠−39.8∘=16.7∠−39.8∘+13.36∠50.2∘=21.4∠5.2∘V
- 一次侧电动势: E ˙ 1 = k E ˙ 2 = 10 × 21.4 ∠ 5. 2 ∘ = 214 ∠ 5. 2 ∘ V \dot{E}_1=k\dot{E}_2=10\times21.4\angle5.2^{\circ}=214\angle5.2^{\circ}V E˙1=kE˙2=10×21.4∠5.2∘=214∠5.2∘V
- 最后绘制相量图:以 U ˙ 1 = 220 ∠ 0 ∘ V \dot{U}_1 = 220\angle0^{\circ}V U˙1=220∠0∘V 为参考相量,依次画出 I ˙ 1 \dot{I}_1 I˙1 、 U ˙ R 1 \dot{U}_{R1} U˙R1 、 U ˙ X 1 \dot{U}_{X1} U˙X1 、 E ˙ 1 \dot{E}_1 E˙1 、 I ˙ 2 \dot{I}_2 I˙2 、 U ˙ 2 \dot{U}_2 U˙2 等相量。
- 一次侧功率因数: cos φ 1 = cos ( − 39. 8 ∘ ) = 0.768 \cos\varphi_1=\cos(-39.8^{\circ})=0.768 cosφ1=cos(−39.8∘)=0.768
- 首先计算一次侧电流: