以下为你呈现《电磁学》第四章的常见内容,不同教材可能会略有差异:
静电场中的导体
- 导体的静电平衡状态:导体内部和表面都没有电荷定向移动的状态叫导体的静电平衡状态。处于静电平衡的导体,其表面紧邻处的电场强度必定和导体表面垂直,且该导体是等势体,其表面是等势面.
- 静电平衡的导体上的电荷分布 :
- 处于静电平衡的导体,其内部各处净电荷为零,电荷只能分布在表面。
- 其表面上各处的面电荷密度与当地表面紧邻处的电场强度的大小成正比。
- 孤立的导体处于静电平衡时,它的表面各处的面电荷密度与该处表面的曲率有关,曲率越大的地方,面电荷密度也越大。
- 有导体存在时静电场的分析与计算:当导体放入外静电场中时,外电场会影响导体上的电荷分布,导体上的电荷分布也会影响外电场,使外电场重新分布,直到导体处于静电平衡状态为止,此时外电场和导体上的电荷分布不再改变.
稳恒磁场
- 磁的基本现象和规律:介绍磁现象的基本概念,如磁极、磁力等,以及电流的磁效应,即电流周围存在磁场 .
- 载流回路的磁场 :
- 毕奥萨伐尔定律:电流元 I d l Idl Idl在空间某点 P P P产生的磁感应强度 d B dB dB的大小与电流元 I d l Idl Idl的大小成正比,与电流元到 P P P点的距离 r r r的平方成反比,与 I d l Idl Idl和 r r r之间夹角 θ \theta θ的正弦成正比,即 d B = μ 0 4 π I d l sin θ r 2 dB=\frac{\mu_0}{4\pi}\frac{Idl\sin\theta}{r^2} dB=4πμ0r2Idlsinθ,其中 μ 0 \mu_0 μ0为真空磁导率。
- 载流导线的磁场:根据毕奥萨伐尔定律可计算各种形状载流导线在空间产生的磁场,如直线电流、圆电流等。例如,载流直导线周围的磁感应强度 B = μ 0 I 2 π r B=\frac{\mu_0I}{2\pi r} B=2πrμ0I( r r r为场点到导线的垂直距离);载流圆线圈轴线上的磁场 B = μ 0 I R 2 2 ( R 2 + x 2 ) 3 / 2 B=\frac{\mu_0IR^2}{2(R^2+x^2)^{3/2}} B=2(R2+x2)3/2μ0IR2( R R R为圆线圈半径, x x x为轴线上场点到圆心的距离) 。
- 磁场的高斯定理和安培环路定理 :
- 磁场的高斯定理:通过任意闭合曲面的磁通量恒为零,即 Φ B = ∮ S B ⋅ d S = 0 \varPhi_B=\oint_{S}B\cdot dS = 0 ΦB=∮SB⋅dS=0,表明磁场是无源场,磁感线是闭合曲线。
- 安培环路定理:在真空的稳恒磁场中,磁感应强度 B B B沿任何闭合路径 L L L的线积分,等于穿过这闭合路径所包围面积的各电流的代数和的 μ 0 \mu_0 μ0倍,即 ∮ L B ⋅ d l = μ 0 ∑ i I i \oint_{L}B\cdot dl=\mu_0\sum_{i}I_i ∮LB⋅dl=μ0∑iIi。该定理可用于计算具有一定对称性的磁场分布,如无限长直圆柱体电流、无限长直螺线管等的磁场。
- 磁场对载流导线的作用:
- 安培力:一段载流导线放在磁场中受到的安培力 d F = I d l × B dF = Idl\times B dF=Idl×B,对于一段有限长载流导线 L L L所受安培力 F = ∫ L I d l × B F=\int_{L}Idl\times B F=∫LIdl×B。例如,在均匀磁场中,长为 L L L的载流直导线所受安培力 F = B I L sin θ F = BIL\sin\theta F=BILsinθ( θ \theta θ为电流方向与磁场方向的夹角)。
- 磁力矩:平面载流线圈在均匀磁场中受到磁力矩的作用,磁力矩 M = I S B sin θ M = ISB\sin\theta M=ISBsinθ,其中 I I I为线圈中的电流, S S S为线圈面积, θ \theta θ为线圈平面的法线方向与磁场方向的夹角 。
- 带电粒子在磁场中运动:
- 洛伦兹力:带电粒子在磁场中运动时受到的洛伦兹力 F = q v × B F = qv\times B F=qv×B,其中 q q q为粒子电荷量, v v v为粒子速度。洛伦兹力的方向始终垂直于粒子的速度方向,因此洛伦兹力不做功,只改变粒子的运动方向,不改变粒子的速度大小。
- 带电粒子在磁场中的运动轨迹:当带电粒子垂直进入均匀磁场时,粒子将在磁场中做匀速圆周运动,其半径 r = m v q B r=\frac{mv}{qB} r=qBmv,周期 T = 2 π m q B T=\frac{2\pi m}{qB} T=qB2πm,其中 m m m为粒子质量 。